Causal Inference at Julius reading group
2024-11-06
\[v_i \leftarrow f_i(pa_i, u_i)\]
A recursive SCM implies a DAG, by following the order of arguments in the set of functions \(F\). E.G.:
\[ F = \begin{cases} Z \leftarrow f(U_Z) \end{cases} \]
A recursive SCM implies a DAG, by following the order of arguments in the set of functions \(F\). E.G.:
\[ F = \begin{cases} Z \leftarrow f(U_Z) \\ X \leftarrow f(Z, U_X) \end{cases} \]
A recursive SCM implies a DAG, by following the order of arguments in the set of functions \(F\). E.G.:
\[ F = \begin{cases} Z \leftarrow f(U_Z) \\ X \leftarrow f(Z, U_X) \\ Y \leftarrow f(X, Z, U_Y) \end{cases} \]
A recursive SCM implies a DAG, by following the order of arguments in the set of functions \(F\). E.G.:
\[ F = \begin{cases} Z \leftarrow f(U_Z) \\ X \leftarrow X' \\ Y \leftarrow f(X, Z, U_Y) \end{cases} \]
We can compute the effect of an action by replacing one \(f\) with a constant, e.g. \(X \leftarrow X'\), keep everything else the same, and evaluate the outcomes
\(X\): treatment, \(Y\): outcome, \(U_1, U_2\): exogenous noise variables; \(p(U_1=1)=p(U_2=1)=0.5\)
\[ F = \begin{cases} X \leftarrow U_1 \\ Y \leftarrow U_2 \end{cases} \]
\[ F' = \begin{cases} X \leftarrow 1_{U_1=U_2} \\ Y \leftarrow U_1 + 1_{X=1,U+1=0,U_2=1} \end{cases} \]
\[ F = \begin{cases} X \leftarrow U_1 \\ Y \leftarrow U_2 \end{cases} \]
\[ F' = \begin{cases} X \leftarrow 1_{U_1=U_2} \\ Y \leftarrow U_1 + 1_{X=1,U+1=0,U_2=1} \end{cases} \]
\(X\): treatment, \(Y\): outcome, \(U_1, U_2\): exogenous noise variables; \(p(U_1=1)=p(U_2=1)=0.5\)
\[ F = \begin{cases} X \leftarrow U_1 \\ Y \leftarrow U_2 \end{cases} \]
\[ F' = \begin{cases} X \leftarrow U_1 \\ Y \leftarrow X U_2 + (1-X)(1-U_2) \end{cases} \]
Image two possible futures for a patient
©Wouter van Amsterdam — WvanAmsterdam — wvanamsterdam.com/talks