Is the JAMA opening up their language for causal effects?

causal inference
Author
Affiliation

University Medical Center Utrecht

Published

June 7, 2024

Randomized controlled trials (RCTs) measure the causal effect of interventions, but results from observational studies should be interpreted as mere associations, right? In a great piece in the JAMA, Issa Dehabreh and Kirsten Bibbins-Domingo describe a framework with a more balanced view.

Black-and-white thinking about causal effects dictated medical research for a long time. But then, some not-so-well conducted RCTs (e.g. no blinding of outcome assessment, selective loss to follow-up, …) do not provide valid estimates of treatment effects. How can we distinguish the good ‘causal’ RCTs from the bad ones if the criterion for causality is whether a study is an RCT or not?

In the past decades the field of causal inference produced several principled definitions of causal effects and established requirements for a study to yield valid causal estimates (e.g. Pearl and Mackenzie 2018; Pearl 2009; hernanCausalInferenceWhat2020?). According to these approaches, RCTs are clearly preferable for treatment effect estimation as in RCTs the requirements for estimating causal effects can be controlled experimentally. Unfortunately, some relevant questions are very hard to answer using RCTs because of logistical or ethical limitations. At the same time, the definitions of causal effects from causal inference imply that causal effects can be estimated outside of RCTs with observational data as well. Though for observational studies, causal estimates are only valid when specific assumptions are met and unfortunately these assumptions cannot be checked with the data, so caution is required. But clearly, the black-and-white RCT=causation and observational=association must be replaced with a more nuanced view.

For a long time, prestigious journals such as the Journal of the American Medical Association (JAMA) restricted the use of causal language (e.g. effect or efficacy) to reporting the primary results of RCTs (“Instructions for Authors JAMA JAMA Network n.d.), further entrenching the black-and-white mindset and evoking criticism from causal inference researchers (e.g. Hernán 2018). Recently, the JAMA opened itself up for discussion on this topic with a very thoughtful publication by Issa Dehabreh and Kirsten Bibbins-Domingo (Dahabreh and Bibbins-Domingo 2024), accompanied by an editorial (Flanagin et al. 2024).

As a researcher in causal inference and machine learning for healthcare I think this a great step towards a more rational and balanced approach to distinghuising causal effects from assocations. This is much needed because causal effects teach us what to do, i.e. what interventions will lead to better patient outcomes. Opening up the language to better express causal research questions and analysis approaches combined with the ability to incorporate both well conducted RCTs and observational studies (mentioning the assumptions required for their estimates to have a causal interpretation) when evaluating interventions will lead to better evidence accumulation and ultimately better outcomes for patients.

References

Dahabreh, Issa J., and Kirsten Bibbins-Domingo. 2024. “Causal Inference About the Effects of Interventions From Observational Studies in Medical Journals.” JAMA 331 (21): 1845–53. https://doi.org/10.1001/jama.2024.7741.
Flanagin, Annette, Roger J. Lewis, Christopher C. Muth, and Gregory Curfman. 2024. “What Does the Proposed Causal Inference Framework for Observational Studies Mean for JAMA and the JAMA Network Journals?” JAMA 331 (21): 1812–13. https://doi.org/10.1001/jama.2024.8107.
Hernán, Miguel A. 2018. “The C-Word: Scientific Euphemisms Do Not Improve Causal Inference From Observational Data.” American Journal of Public Health 108 (5): 616–19. https://doi.org/10.2105/AJPH.2018.304337.
“Instructions for Authors JAMA JAMA Network.” n.d. https://jamanetwork.com/journals/jama/pages/instructions-for-authors. Accessed August 3, 2021.
Pearl, Judea. 2009. Causality. Cambridge University Press.
Pearl, Judea, and Dana Mackenzie. 2018. The Book of Why: The New Science of Cause and Effect. 1st edition. New York: Basic Books.

Citation

BibTeX citation:
@online{van_amsterdam2024,
  author = {van Amsterdam, Wouter},
  title = {Is the {JAMA} Opening up Their Language for Causal Effects?},
  date = {2024-06-07},
  url = {https://vanamsterdam.github.io/posts/240607-jama-causal-language/},
  langid = {en}
}
For attribution, please cite this work as:
Amsterdam, Wouter van. 2024. “Is the JAMA Opening up Their Language for Causal Effects?” June 7, 2024. https://vanamsterdam.github.io/posts/240607-jama-causal-language/.