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THE BIGGER PICTURE To tailor treatment decisions to individual patients, many researchers develop pre-
diction models. These models assess a patient’s risk of an adverse outcome, such as a heart attack, based
on their characteristics.Many believe that the best predictionmodels for decision-making are those that have
the highest predictive performance, e.g., discrimination—the ability to assign higher risks to patients with the
outcome compared to those without. Common advice is to keep evaluating discrimination after the model’s
implementation to ensure effective decision-making. We show, through a clinical example andmathematical
proofs, that this belief is flawed because of the existence of so-called ‘‘harmful self-fulfilling prophecies’’: pre-
diction models that retain good discrimination after implementation and yet harm patients when used for de-
cision-making. The takeaway is that rather than relying on discrimination, we should assessmodels based on
their impact on treatment decisions and patient outcomes.
SUMMARY
Predictionmodels are popular in medical research and practice. Many expect that by predicting patient-spe-
cific outcomes, thesemodels have the potential to inform treatment decisions, and they are frequently lauded
as instruments for personalized, data-driven healthcare. We show, however, that using prediction models for
decision-making can lead to harm, even when the predictions exhibit good discrimination after deployment.
These models are harmful self-fulfilling prophecies: their deployment harms a group of patients, but the
worse outcome of these patients does not diminish the discrimination of the model. Our main result is a
formal characterization of a set of such predictionmodels. Next, we show that models that are well calibrated
before and after deployment are useless for decision-making, as they make no change in the data distribu-
tion. These results call for a reconsideration of standard practices for validation and deployment of prediction
models that are used in medical decisions.
INTRODUCTION

Clinicians and medical researchers frequently employ

outcome prediction models (OPMs): statistical models that

predict a certain health outcome based on a patient’s

characteristics.1 Researchers develop OPMs to provide infor-

mation to clinicians so they may use this information in difficult
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treatment decisions (e.g., Salazar et al.2). In some cases, cli-

nicians will treat patients with a bad expected outcome

more aggressively, for example, by giving cholesterol-

lowering medication to patients with a high predicted risk of

a heart attack.3,4 In other cases, for instance, when the treat-

ment is burdensome or scarcely available (e.g., ventilator ma-

chines in the intensive care unit during a pandemic), clinicians
pril 11, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1
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may reserve treatment for patients with a good predicted

outcome.

Many such OPMs are added to the protocol of care by

designing specific thresholds for specific actions.3 If the pre-

dicted outcome is above or below the threshold, a certain action

is taken, e.g., the patient receives a more aggressive therapy.

The basis for including an OPM in a care protocol is generally

predictive accuracy in validation studies.5 In these validation

studies, the OPMmay ormay not have been used to inform treat-

ment decisions. While the difference between a clinical trial of an

OPM’s deployment and the validation of performance metrics is

appreciated in themedical literature, there are still notable exam-

ples where the latter is perceived to be sufficient to justify the im-

plementation of OPMs in the protocol of care. This is reflected in

several guidelines and reviews.5,6 Commonly used performance

metrics are measures for discrimination and calibration, the

latter being assessed much less frequently than the former.7

At first, it may seem that using OPMs for decision support is

beneficial since giving more information should lead to better

treatment decisions. However, implementing a prediction model

for treatment decisions is an intervention that changes treatment

decisions and, thus, patient outcomes. Whether this change in

treatment policy improves patient outcomes is not determined

by prediction accuracy in a validation study.8 For instance, in

caseswhere a certain patient subpopulation historically received

suboptimal care, an accurate OPMwill predict a worse outcome

for these patients compared to similar patients from a different

subpopulation. If clinicians decide to withhold effective treat-

ments (e.g., due to scarcity or perceived futility) to this under-

served subpopulation based on the OPM’s prediction of a bad

outcome, then the implementation of the OPM perpetuates

biases and causes harm to these patients despite its accuracy.

Moreover, the implementation of this harmful new policy brought

about the scenario predicted by the OPM, as in a self-fulfilling

prophecy. One concrete example where clinicians treat patients

with a bad expected outcome less aggressively is in small cell

lung cancer. Prognostic scores for patients with small cell lung

cancer, such as theManchester score,9 are specifically intended

to not overtreat patients with a bad predicted outcome because

this is expected to be futile.10,11

Recognizing that prediction model performance may change

over time, across healthcare settings, and in certain patient sub-

groups, many call for increased monitoring of AI models, with

model updating mentioned as the best approach.12–14 However,

these approaches fall short, as they put the wrong metric up-

front: prediction accuracy.We show that the value of a prediction

model is not directly derived from its accuracy, and in some

cases, having worse prediction accuracy over time is exactly

what we want from a patient outcomes perspective. Focusing

only on predictive performance might lead to the employment

of a new policy that is harmful to patients or to the unduly with-

drawal of a policy that was, in fact, beneficial.

In this article, we address the following questions. (1) Under

what conditions is a new policy based on an OPM going to be

harmful, meaning that it leads toworse outcomes than before us-

ing the model? (2) In what circumstances would such a harmful

policy go undetected by measures of discrimination or calibra-

tion? In what follows, we provide a formalization of the case

where patients with a high predicted probability of the outcome
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get treatment, where the outcome may be preferable (e.g.,

1-year survival) or undesirable (e.g., a heart attack). Specifically,

we examine the setting where a new OPM is supposed to

‘‘personalize’’ an existing treatment policy by considering addi-

tional features. The methods section provides a motivating

example, notation, and definitions, and the results section pre-

sents the main results concerning OPMs that are harmful and

self-fulfilling prophecies. We first show that even in a simple

setup with a binary covariate, a non-trivial subset of OPMs yields

harmful self-fulfilling prophecies. This means that such models

cause harm but exhibit good discrimination on post-deployment

data, meaning that naively interpreting this as a successful

deployment leads to harmful policies. These theoretical results

are paired with numerical experiments demonstrating that harm-

ful self-fulfilling prophecies can occur without assuming extreme

treatment effects or treatment effect heterogeneity. Next,

perhaps surprisingly, we show that when an OPM is well cali-

brated on both (1) the historical data and (2) a validation study

where the model is used for treatment decisions, the OPM is

not useful for decision-making. Finally, after highlighting the

shortcomings of validating and implementing OPMs based on

predictive performance, we mention approaches to model

building and validation that explicitly account for the causal ef-

fects of treatments on the predicted outcomes, avoiding such

shortcomings.

Based on our results, several common practices in building

and deploying OPMs intended for decision-making need revi-

sion. (1) Developing OPMs on observational data without regard

for the historical treatment policy is potentially dangerous

because the change in treatment policy between pre- and

post-deployment is what determines the effect of the model on

patient outcomes. (2) Implementing a personalized OPM is not

always beneficial, even if the model is very accurate. (3) When

monitoring discrimination prospectively after deployment,

sometimes good discrimination means a harmful new policy

and sometimes a beneficial one.

METHODS

Motivating example of a harmful self-fulfilling prophecy
We start with a hypothetical example based on realistic medical

assumptions that would result in an OPM yielding a policy that is

both harmful, meaning patient outcomes are worse compared to

before deployment, and self-fulfilling, meaning the OPM has

good discrimination post-deployment. In Note S1, we provide

a formal version of this example with corresponding equations

and proof.

Consider the problem of selecting a subset of patients with

end-stage cancer for palliative radiotherapy. Such treatment

has side effects, and thus, domain experts advise reducing over-

treatment in this population. To comply with this advice, a med-

ical center needs to decide which patients will not be eligible

anymore for the therapy. The medical center decides to give

the therapy to patients with the longest expected overall survival,

under the assumption that for these patients, the side effects are

justifiable. To support this policy, researchers build an OPM to

predict the probability of 6-month overall survival based on the

pre-treatment tumor growth rate using historical patient records

from the medical center. Fast-growing tumors are more
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aggressive, so these patients have a shorter survival overall. The

medical center decides to implement this model to allocate

radiotherapy and tests the model’s discrimination post-

deployment.

The new treatment policy with the OPM is, thus, ‘‘treat patients

with slow-growing tumors but not those with fast-growing tu-

mors.’’ However, fast-growing tumors respond better to radio-

therapy than slow-growing tumors,15 so the new OPM-based

policy treats exactly the wrong patients: those who do not

benefit from treatment still receive it, and those who would

benefit from treatment do not, so deployment of the model is

harmful. The contrast in survival between patients with fast-

growing tumors and slow-growing tumors is only more pro-

nounced post-deployment, meaning that, paradoxically, the

OPM has good discrimination before and after deployment.

This potential for deploying harmful self-fulfilling prophecies

by only relying onmeasures of predictive discrimination is clearly

undesirable. We now provide a formal description of when these

situations occur, revealing also a dual case where OPMs that

provide benefits to patient subgroups show worse post-deploy-

ment discrimination.
Notation and definitions
We assume a binary treatment T, a binary outcome Y, and a bi-

nary feature X ˛X = f0;1g. We denote the outcome obtained

with setting treatment T to t as Yt. An OPM is a function trained

on historical data to predict the probability of the outcome of in-

terest. We use piðXÞ to denote a policy for assigning treatment,

possibly conditional on X, with an index i to indicate what policy

we are referring to. Throughout the paper, p0 will be used to indi-

cate the historic treatment policy that was in place in the data

from which the OPM was developed.

We assume the historical policy is constant and deterministic,

meaning that it is always equal to 0 or 1 (i.e., patientswere always

treated or never treated). Next we define what it means to craft a

policy based on an existing OPM.Wewill be concerned only with

threshold-based policies, namely policies that assign treatment

based on a threshold l˛R. In our setup, policies assign treat-

ment to patients only if the expected outcome is above l, which

could mean either a desirable (e.g., 1-year survival) or undesir-

able (e.g., a heart attack) outcome.

Definition 1 (policy informed by OPM): let f : X/½0;1� be an

OPM and l˛R a threshold. We call pf a policy informed by f

and define it as follows:

pfðxÞ =

�
1 fðxÞ> l

0 fðxÞ% l
: (Equation 1)

Such policies describe the post-deployment scenario, when

the OPM influences treatment assignment. This deployment

will change some of the outcome distributions compared to

pre-deployment. We distinguish probabilities pre- and post-im-

plementation using subscripts: pið:Þ with i = 0 for the pre-imple-

mentation probabilities and i = f for the post-implementation

probabilities. We now present the first key idea of this paper,

namely the special class of OPMs whose predictions are rein-

forced upon implementation. We consider as ametric of discrim-

ination the popular area under the receiver operating character-

istic curve16 (AUC).
Definition 2 (self-fulfilling OPM): let f : X/½0;1� be an OPM

and l˛R a threshold, and let pf be the policy informed by f.

Let AUCðpiÞ denote the AUC of this OPM on data generated

with the historic policy ðp0Þ or with the policy defined by ðpf Þ.
We call the pair ðf ; lÞ self-fulfilling if the AUC remains the same

or increases post-deployment, namely iff

AUCðpfÞRAUCðp0Þ: (Equation 2)

Finally, we specify what we mean with an OPM being harmful in

comparison with the status quo.

Definition 3 (harmful OPM): let f : X/½0;1� be an OPM and

l˛R a threshold, let p0 denote the historic treatment policy,

and let pf be the policy informed by f.

We write the expected outcomes under the different pol-

icies as

piðY = 1jXÞ = ET�piðXÞpðYT = 1jXÞ; (Equation 3)

where i = 0 denotes the historical distribution and i = f the distri-

bution under pf . We call f harmful for the group with X = x with

pðX = xÞ> 0 if the expected outcome of this group is worse un-

der the new policy compared to the old policy, namely when

Y = 1 is preferable iff

pfðY = 1jX = xÞ<p0ðY = 1jX = xÞ (Equation 4)

or when Y = 0 is preferable iff

pfðY = 1jX = xÞ>p0ðY = 1jX = xÞ: (Equation 5)

Note that this definition is for when deploying an OPM is

harmful to a subgroup of patients, which, in general, is

different from being harmful marginally, i.e., applying pf leads

to worse outcomes on average. However, we will later see

that in our setup with binary X, one of the two groups has

the same outcomes pre- and post-deployment, so an OPM

that is harmful to a subgroup will also be marginally harmful.

When a policy informed by an OPM is both harmful and

self-fulfilling, we have a worst-case scenario where the new

policy is causing harm to a subgroup, but this, perhaps coun-

terintuitively, does not result in a decrease in AUC post-

deployment.
RESULTS

We now move to the main results, whose proofs can be found in

Note S2.

The setting where a new OPM is supposed to personalize an

already existing treatment policy by considering more features

is encoded as follows: the new OPM considers a feature X that

was previously ignored by the historical policy, specifically, p0

is constant and deterministic. In addition, the new policy pf is

not constant but varies with X.
Harmful models may have good discrimination post-
deployment
We state our main observation as an informal theorem.

Theorem 4 (informal main result): let pf be the policy informed

by the OPM f using a threshold l. Assume that (1) the historical
Patterns 6, 101229, April 11, 2025 3
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policy p0 is constant and deterministic, (2) the new policy pf is

not constant, i.e., not always equal to 1 or 0, and (3) the marginal

distribution of X is the same pre- and post-deployment: piðXÞ =
pðXÞ for i˛ f0; fg.

Under these assumptions, a non-trivial subset of OPMs will

demonstrate good post-deployment discrimination because

they yield self-fulfilling prophecies and, at the same time, their

deployment harms patients.

We proceed to characterize the contours of the subset of self-

fulfilling and harmful OPMs.

Proposition 5 (self-fulfilling): suppose that the assumptions of

theorem 4 hold. Furthermore, assume that the joint probabilities

of X and Y are non-deterministic both pre- and post-

deployment:

0 < piðY = 1;X = xÞ< 1;cx˛X: (Equation 6)

Then, the following two statements are true: (1) if the treatment

effect is always positive, namely cx˛X : pðY1 = 1jX = xÞR
pðY0 = 1jX = xÞ, then ðf ; lÞ is self-fulfilling, and (2) if the

treatment effect is always negative, meaning cx˛X : pðY1 =

1jX = xÞ<pðY0 = 1jX = xÞ, then ðf ; lÞ is not self-fulfilling.

Proposition 5 gives sufficient conditions for an OPM to yield a

self-fulfilling prophecy. When Y = 1 is preferable, meaning the

new policy treats only those with a favorable predicted outcome

(e.g., under resource scarcity), the sufficient condition is that the

treatment effect is beneficial for all values of X. When instead

Y = 0 is preferable, meaning the ‘‘treat high-risk patients’’

setting, the sufficient condition is that treatment is detrimental

for all values of X. Treatments that are detrimental for all values

of X are less likely to be used in practice, as, most often, treat-

ments are approved for use after they are proven to be beneficial

on average with a randomized controlled trial (RCT). In this case

of ‘‘treat high-risk patients,’’ self-fulfilling prophecies may still

occur when the treatment is detrimental to a subgroup of pa-

tients. The assumption in proposition 5 that a treatment is always

beneficial (or harmful) may hold in many cases. Typically, the size

of the effect may vary over individuals, but that does not mean

that a treatment is beneficial for patients with some values of X

but harmful for patients with other values. For example, patients

with a high risk of cardiovascular disease are expected to benefit

more from preventative treatments, such as cholesterol-

lowering medication, than patients with a low risk of cardiovas-

cular disease, but a beneficial effect is expected in all patients.

If the assumption does not hold, meaning that the treatment is

beneficial for some patients and detrimental for others, then

self-fulfilling prophecies may still occur, as shown later in the nu-

merical experiments, but we can no longer provide sufficient

conditions for when a self-fulfilling prophecy will occur for sure.

Remark 6: proposition 5 does not depend on the OPM’s

discrimination in the historical data, meaning that models with

‘‘good’’ discrimination (i.e., high AUC) and ‘‘bad’’ discrimination

(low AUC) are equally susceptible to yielding self-fulfilling proph-

ecies under the conditions of the proposition.

Now we know when OPMs are self-fulfilling and thus have

good post-deployment discrimination, but can these self-fulfill-

ing OPMs also be harmful? Proposition 7 indicates that they can.

Proposition 7 (harmful): under the assumptions of theorem 4,

when Y = 1 is preferable, f is harmful for the group with X = x iff
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(1) p0ðxÞ = 1 and pf ðxÞ = 0 and pðY1 = 1jX = xÞ>pðY0 =

1jX = xÞ or
(2) p0ðxÞ = 0 and pf ðxÞ = 1 and pðY1 = 1jX = xÞ<pðY0 =

1jX = xÞ.

When Y = 0 is preferable, the inequality signs reverse.

The conditions of this proposition indicate that, as one would

expect, removing the treatment from the group with X = x is

harmful iff pðY1 = 1jX = xÞ>pðY0 = 1jX = xÞ (assuming Y = 1 is

preferable), i.e., if the effect of the treatment was positive for

this group. Conversely, adding treatment to this group is

damaging iff pðY1 = 1jX = xÞ<pðY0 = 1jX = xÞ (when Y = 1 is

preferable), meaning that the treatment decreases the outcome

for the group.

Remark 8 (harmful OPMs are marginally harmful): under the

assumptions of theorem 4, OPMs that are harmful for one sub-

group are also harmful on average, as the other subgroup’s

treatment policy and outcomes do not change.

Taking proposition 5 on when OPMs yield self-fulfilling proph-

ecies and proposition 7 on when OPM deployment is harmful

together, we reach the perhaps surprising conclusion of theorem

4: even in the simple setup of binary treatment and binary X,

some OPMs are both self-fulfilling prophecies, thus demon-

strating good post-deployment discrimination, and harm a pa-

tient subgroup when deployed. We presented an example

above, which we formalize in Note S1. In Table 1, we list the

cases in which OPM deployment is harmful based on three

pieces of information that are available post-deployment: (1) is

Y = 1 preferable or undesirable? (2) Was the historical policy

‘‘treat everyone’’ or ‘‘treat no one’’? (3) Did the AUC of the

OPM increase post-deployment compared to the AUC pre-

deployment (i.e., is the OPM self-fulfilling)? Finally, we note

that the performance of the OPM on the historical data does

not feature in the assumptions or statement of proposition 7.

This entails, contrary to common expectations, that a high per-

formance on historical data, including external validation, pro-

vides no guarantee of whether the OPM-driven policy will be

beneficial.

In examining such results, one may wonder what would be the

size of the differences in AUC for the described harmful self-ful-

filling OPMs in realistic data settings and if such OPMs may also

occur if the assumption of the treatment being beneficial (or

harmful) for all values of X does not hold. To answer these ques-

tions, we conducted a numerical experiment via the following

data distributions:

x � BðpxÞ; (Equation 7)

t˛ f0;1g; (Equation 8)

h = b0 + bxx + btt + bxtxt; and (Equation 9)

y � BðsðhÞ Þ; (Equation 10)

wherepx is the proportion of datapointswith a positive attributeX,

B the Bernoulli distribution, t is the historical treatment policy

(which is always 0 or 1 according to our assumptions), s is the sig-

moid (logistic) function, and the b parameters encode the effects



Table 1. Overview of when OPM deployment was harmful based on three pieces of information that were available post-deployment

Interpretation of Y = 1 (and policy) p0 AUCðpf Þ � AUCðp0Þ OPM deployment was

Desirable (treat low risk patients) 1 (treat everyone) >0 (self-fulfilling) harmful

1 (treat everyone) <0 (not self-fulfilling) beneficial

0 (treat no one) >0 (self-fulfilling) beneficial

0 (treat no one) <0 (not self-fulfilling) harmful

Undesirable (treat high-risk patients) 1 (treat everyone) >0 (self-fulfilling) beneficial

1 (treat everyone) <0 (not self-fulfilling) harmful

0 (treat no one) >0 (self-fulfilling) harmful

0 (treat no one) <0 (not self-fulfilling) beneficial

These results apply under the assumptions of theorem 4: the historical policy p0 is constant and deterministic, the new policy is not constant, and the

marginal distribution of X (a binary variable) is the same pre- and post-deployment. As an example, the top row corresponds to themotivating example

in the introduction. Before deployment, the historical policy was to treat everyone; the new policy is to treat only patients with a favorable expected

outcome. Post-deployment, the OPM has better discrimination than before deployment. Because the treatment decisions (and thus outcomes) for the

patients with a good prognosis have not changed, an increased AUC post-deployment can only occur when the patients with a bad prognosis have

even worse outcomes than before. Thus, the deployment must have been harmful. p0, historical treatment policy (either treat everyone or treat no one);

AUCðpf Þ, AUC post-deployment; AUCðp0Þ, AUC pre-deployment; OPM, outcome prediction model.
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of x and t on the outcome. Setting these parameters, enforcing the

assumptions of the theorem, and deciding whether a higher Y is

better (e.g., 1-year survival) or worse (e.g., a heart attack) gives

enough information to describe the pre- and post-deployment

scenarios. Note that a non-constant policy pf entails that different

treatments are now prescribed for the two groups defined by X;

thus, further assumptions on the model and threshold l are not

needed. This allows us to calculate discrimination statistics pre-

and post-deployment and to determine whether the new policy

is harmful. By repeating the experiment for several values of the

parameters—within reasonable ranges—one can investigate

when harmful self-fulfilling policies arise.

The results match the theoretical findings and, furthermore,

display that harmful self-fulfilling policies do occur in ‘‘com-

mon’’ circumstances without extreme treatment effects or

extreme treatment effect interactions, as well as when the

treatment effect is not of a constant sign. Figure 1 shows

several instances of the experiment. A positive difference in
higher Y is desirable higher Y is not desirable

historic: treat no one
historic: treat everyone

0.5 1.0 2.0 0.5 1.0 2.0
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e�t
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C
0

cas

e�xt
AUC denotes a self-fulfilling policy, while harmful policies fall

within a colored area. Inspection of the figure reveals several

scenarios to be harmful and self-fulfilling in the top right and

bottom left graphs. These scenarios can occur at different

values of treatment effect (parameter bt) and can even lead

to an increase of AUC of > 0:1. For Figure 1, we only kept set-

tings where the treatment effect is beneficial on average. This

removes several cases of harmful self-fulfilling prophecies but

is more realistic, as treatments are generally only allowed on

the market if their average effectiveness is demonstrated in

RCTs. In Figure S3 in Note S3, all settings are presented.

Furthermore, Figure S6 in Note S3 gives another visualization

of the same experimental results, this time highlighting that

harmful self-fulfilling prophecies occur in the absence of

strong treatment effect interactions (i.e., treatment effect het-

erogeneity or the parameter bxt ).

Full details on the setup of the numerical experiment and

further results can be found in Note S3, and the code to
e
harmful & selffulfilling

harmful

beneficial

0.5

1

2

Figure 1. Results of the numerical experi-

ment

The treatment effect is reported on the horizontal

axis on the odds ratio scale ðebt Þ, while the differ-

ence in AUC pre- and post-deployment is given on

the vertical axis. When the said difference is posi-

tive, we have a self-fulfilling policy. An increase in

AUC occurs when the difference in outcomes be-

tween the two groups increases post-deployment.

Since our setup implies that only one group

changes, this means that either the good-prognosis

group got even better (a beneficial policy) or the

bad-prognosis group got even worse (a harmful

policy). The historic policy determines which group

has a change in treatment policy and outcome. The

four graphs reflect the different combinations of

historical policy and outcome interpretation. Areas

with (harmful) self-fulfilling prophecies are color

coded. Each of the 8 areas corresponds to a row in

Table 1. The points are color coded with the value of

treatment effect interaction, again with an odds ra-

tio ðebtx Þ.
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reproduce the results is available online (see data and code

availability).

Note that the table and figures highlight a dual problem of

harmful self-fulfilling, which we could call ‘‘beneficial self-defeat-

ing’’: the case where AUC decreases post-deployment but the

new policy is, in fact, beneficial. In this case, an overreliance

on performance metrics might lead to another ill-advised deci-

sion: the withdrawal of a policy that was, in fact, beneficial.

OPMs that are calibrated pre- and post-deployment are
not useful for treatment decisions
Monitoring discrimination post-deployment and naively inter-

preting good post-deployment discrimination as a safe deploy-

ment is not a good strategy, as self-fulfilling prophecies have

good post-deployment discrimination but can still be harmful de-

pending on the context. Conversely, beneficial policiesmay have

decreased post-deployment discrimination due to the desirable

effect of improving patient outcomes.

We now turn to another key metric of OPMs predicting the risk

of an outcome, calibration,17–19 and investigate how post-

deployment calibration relates to harmful policies.

We use the following definition of calibration.

Definition 9: let pðX;YÞ be a joint distribution over feature X

and binary outcome Y and f : X/½0; 1� an OPM. f is calibrated

with respect to pðX;YÞ if, for all a˛ ½0;1� in the range of

f, EX;Y�pðX;YÞ½Y jfðXÞ = a� = a.

The OPM can be calibrated on the pre-deployment historical

distribution and/or the post-deployment distribution. Theorem

4 states that harmful OPMs can have good pre- and post-

deployment discrimination, but can they also have good

calibration?

The following theorem shows that OPMs that are calibrated

pre- and post-deployment do not lead to better treatment

decisions.

Theorem 10: let f be an OPM that is calibrated on historical

data and pf be non-constant. Such an OPM is calibrated on

the deployment distribution iff, for every x˛X,

p0ðxÞ = pfðxÞ or pðY1 = 1jX = xÞ = pðY0 = 1jX = xÞ:
(Equation 11)

Note that this entails that for all x˛X, either the treatment pol-

icy does not change or it changes where it is irrelevant because,

for that value of X, the treatment effect is zero. Both cases imply

that the implementation of the OPM is inconsequential. This may

seem counterintuitive, but an OPM being calibrated both before

and after deployment means the distribution has not changed,

so the policy remains the same, or the policy was changedwhere

it is irrelevant (i.e., no treatment effect). Therefore, an OPM that is

calibrated on the development cohort that remains calibrated

post-deployment is not a useful OPM.

Related work
The intuition that deploying models for decision support is an

intervention that requires causal evaluation methods goes

back to at least the 90s,20 and previous work noted that predic-

tion accuracy does not equal value for treatment decision-mak-

ing.8,21,22 Here, we take the additional step of exactly character-

izing the set of prediction models that yield harmful self-fulfilling
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prophecies. The idea that model deployment changes the distri-

bution and affects model performance was noted in several lines

of previous work. Several authors noted that model performance

may degrade over time due to the effect of deployment of the

model,23,24 but we study the case where model performance

does not degrade but the implementation of it still causes

harm. Also, we find that degraded discrimination may indicate

a benefit of the deployment. Perdomo et al.25 and Liley et al.26

study the setting of performing successive model updates,

each time after deploying the previous model for decision-mak-

ing. Perdomo et al.25 study when, over successive deployments,

the predictive performance stabilizes or reaches optimality, and

Liley et al.26 study both model stability and the effect of model

deployment on outcomes. Our work may be seen as a special

case of these works with only a single model deployment and

no model update, but we add new insights as we describe

exactly when a single model deployment leads to harm and

good post-deployment discrimination.

Several groups have studied out-of-distribution generalization

and its connections to causality and invariance27–29 with the aim

of removing a model’s dependency on spurious correlations.

Again, our work differs, as we are interested in characterizing

model performance following a very specific distribution change

(a treatment policy change induced by a prediction model), and

ourmain concern is the effect of this policy change on outcomes.

Finally, current guidelines on prediction model validation and

deployment focus on discrimination and calibration only, not

on these newer invariance metrics.5,22 Concurrent work studies

the same setup as ours through the lens of domain adaptation,

where each (pre-)deployment setting is formalized as a

domain.30 They describe when the effect of deploying (or updat-

ing) an OPM for decision support can be estimated without

observing outcomes under the target domain; however, both

their assumptions and results diverge from the present work.

We are not the first to warn against naively using OPMs for de-

cision support (see, e.g., points 6.3 and 6.7 in Assel et al.31).

However, (intended) misuse of OPMs is still far too common in

medical research and guidelines, and the reason why this can

lead to harmful situations is not well understood. Our work pro-

vides a formal approach to understanding the risks of using

OPMs without proper validation.

DISCUSSION

We showed when OPMs yield harmful self-fulfilling prophecies,

meaning they lead to patient harm when used for treatment de-

cision-making but retain good discrimination after deployment.

Moreover, we showed that when a model is well calibrated

before and after deployment, it is not useful for treatment deci-

sion-making. The upshot of these findings is that not only do

harmful and self-fulfilling policies exist, but in some scenarios,

it is even desirable to see worse discrimination after deployment,

as this may signal a beneficial new policy in terms of patient out-

comes. These results demonstrate the inadequacy of evaluating

predictive models post-deployment with discrimination and cali-

bration when these models are used for decision-making.

When interpreting the performance of an OPM post-deploy-

ment, a ‘‘high AUC is good, low AUC is bad’’ mindset proves

to be too simplistic. A higher performance post-deployment
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does not necessarily indicate a beneficial policy change, and a

lower performance post-deployment is not, by itself, a sign

that the model is harmful. For instance, the latter may be due

to poor generalization performance but may also be due to the

OPM implementation being beneficial and changing the popula-

tion so that the prediction task becomes harder (hence a lower

AUC), shedding a new light on results such as those of Wong

et al.32 In this second circumstance, removing an OPM-based

policy due to low performance would, in fact, be detrimental in

terms of patient outcomes. When presented with a case where

an OPM was deployed and re-evaluated for predictive accuracy

post-deployment, our Table 1 can provide concrete guidance for

determining whether the new policy was harmful or beneficial. In

short, the pre-existing treatment policy, the interpretation of the

outcome variable, and the change in AUC post-deployment can

already give an indication of the effect of the new policy on pa-

tient outcomes, provided the assumptions of our settings hold.

In recent years, the United States Food and Drug Administra-

tion (FDA) and the European Medical Agency (EMA) have been

developing protocols on regulating AI-based software for medi-

cal applications. The FDA’s guiding principles explicitly include a

total product life-cycle approach, where post-deployment moni-

toring and certain potential model updates are foreseen and

described during initial approval, both with the aim to ensure

post-deployment safety, for example, under dataset shifts but

also to avoid the need for re-approval after each model update.

Though their guiding principles on ‘‘goodmachine learning prac-

tice’’33 and ‘‘predetermined change control plans’’34 both

mention post-deployment monitoring for safety, the intended

monitoring seems to center mostly around predictive perfor-

mance, which our results demonstrate to be insufficient to

protect against harmful self-fulfilling prophecies. The EMA’s

‘‘Reflection paper on the use of artificial intelligence in the life cy-

cle of medicines’’ also recommends pre-planned monitoring but

only of predictive performance.35

Requiring explicit monitoring of changes in patient outcomes

over time and changes in treatment policy may, in some cases,

be warranted. Though monitoring patient outcomes in impor-

tant pre-determined patient subgroups before and after

deployment may detect harmful model deployments, before-

after comparisons are plagued by well-known biases such as

potential concurrent changes in other policies or general time

trends in outcomes. The best experiment to demonstrate the

safety of deploying an OPM is to conduct a cluster RCT, where

some caregivers are randomly selected to have access to the

OPM and others are not. The difference in average outcomes

of patients between the caregivers with and without access de-

termines whether using the OPM led to better patient out-

comes. When cluster randomized trials are unfeasible, other,

smaller clinical studies might be the next best option.36,37

How to pre-specify safe model monitoring and updates after

deployment in a total product life-cycle approach is left for

future work.

Finally, we note that developing OPMs that ignore the historic

treatment policy is, in many cases, a bad approach when the ul-

timate aim is to improve the policy for assigning treatments.8,38

Instead, researchers should consider using methods developed

for improving decisions, such as prediction-under-intervention

models or models of the conditional average treatment effect
(CATE) (for example, Feuerriegel et al.,39 Wager and Athey,40

and Kreif et al.41). These methods require either the availability

of large, good-quality RCTs with detailed information on pre-

treatment patient characteristics or observational datasets

where the assumption of no unobserved confounding is tenable.

Also, these methods require a specific evaluation strategy, as

they are evaluated on their ability to predict outcomes under a

new treatment policy or the effect of introducing a new treatment

policy on outcomes, not on their ability to predict the outcome

under the historical treatment policy. For these models, cluster

randomized trials are also the gold standard for evaluating the ef-

fect of the new treatment policy on patient outcomes, but other,

specialized evaluation methods exist.37,42 In this light, evaluating

an OPM-based policy post-deployment with Table 1 is not a

recommended practice for new OPMs but rather a way to deter-

mine post hoc whether potential harm was done when an OPM

was deployed for decision support without the proper prior

evaluation.

Some limitations remain, encoded in the assumptions of our

formal results. The setting we describe is kept simple on pur-

pose, a choice that helps to pinpoint the problem but somewhat

limits the applicability of this theory to real-world use cases. The

extension of our results to other feature types (continuous and

categorical X), non-threshold-based policies, or a p0 that is not

constant (i.e., varies with X) or is non-deterministic is left to future

work. Other, more complex use cases worth investigating might

display policies that are harmful to subgroups identified by vari-

ables not included in the list of predictors of the model. The

continuation of this line of work entails the re-evaluation of the

metrics to monitor and assess a model’s effectiveness, and

given that model deployments for decision support are interven-

tions, this will benefit from using the language of causal

inference.
Conclusion
OPMs can yield harmful self-fulfilling prophecies when used for

decision-making. The current paradigm on prediction model

development, deployment, and monitoring needs to shift its pri-

mary focus away from predictive performance and instead to-

ward changes in treatment policy and patient outcomes.
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