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Abstract

Prediction models need reliable predictive performance as they inform clinical decisions,
aiding in diagnosis, prognosis, and treatment planning. The predictive performance of these
models is typically assessed through discrimination and calibration. Changes in the distribution
of the data impact model performance and there may be important changes between a model’s
current application and when and where its performance was last evaluated. In health-care,
a typical change is a shift in case-mix. For example, for cardiovascular risk management, a
general practitioner sees a different mix of patients than a specialist in a tertiary hospital.

This work introduces a novel framework that differentiates the effects of case-mix shifts
on discrimination and calibration based on the causal direction of the prediction task. When
prediction is in the causal direction (often the case for prognosis preditions), calibration remains
stable under case-mix shifts, while discrimination does not. Conversely, when predicting in
the anti-causal direction (often with diagnosis predictions), discrimination remains stable, but
calibration does not.

A simulation study and empirical validation using cardiovascular disease prediction models
demonstrate the implications of this framework. The causal case-mix framework provides
insights for developing, evaluating and deploying prediction models across different clinical
settings, emphasizing the importance of understanding the causal structure of the prediction
task.

keywords: calibration, discrimination, case-mix, causal inference, prediction model, external
validation

1 Introduction

Clinicians use prediction models for medical decisions, for example when making a diagnosis, es-
timating a patient’s prognosis, or when making triaging or treatment decisions. When basing a
medical decision on a prediction model it is important to know how reliable the model’s predictions
are, i.e. what is the model’s predictive performance, typically measured with discrimination and
calibration in the case of binary outcomes. Discrimination measures how well a prediction model
separates positive cases from negative cases, whereas calibration measures how well predicted prob-
abilities align with observed event rates.

An issue with predictive performance is that there may be important changes between when
a model’s predictive performance was last evaluated, and when and where it is used, meaning
that the underlying data distribution may have changed. No model can have good predictive
performance under all arbitrary changes in the data distribution, but we may consider one important
class of changes in distribution described with the term ‘case-mix’. For instance, when comparing
cardiovascular risk management in the general practitioner setting with a tertiary hospital setting,
the frequency of certain comorbidities and risk factors will be different across settings. Typically
the tertiary center will encounter more high risk patients, so their ‘case-mix’ is different than in the
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general practitioner setting. Another change in case-mix is the frequency of myocardial infarction
in patients presenting with chest pain at either the general practitioner or in those referred to
acute cardiac care centers. We present a formal definition of a shift in case-mix using the language
of causality. The independent causal mechanisms principle states that when viewing the joint
distribution of observed data trough a mechanistic causal lens, where effects are created from
inputs (causes) by a causal mechanism, the distribution of the inputs (causes) is independent of the
mechanism that produces the outputs from the inputs [1]. A natural causal definition of a shift in
case-mix is thus a shift in the marginal distribution of the causes, and we may make the additional
assumption that the mechanism is the same across environments. When applied to the above
example this would mean that though tertiary case center patients have a different distribution of
risk factors than patients from the general practitioner setting, one may hope that given knowledge
of sufficient risk-factors, the risk of cardiovascular disease for two patients with the same values of
risk-factors is the same regardless of what setting they are in.

This causal definition of a shift in case-mix implies that when the prediction task is in the causal
direction versus in the anti-causal direction, a change in case-mix has a different interpretation.
Inferring a diagnosis is typically prediction in the anti-causal direction, meaning predicting the cause
(=underlying diagnosis) based on its effects (=symptoms), and here a change in case-mix is a change
in distribution of the prediction target (the diagnosis). In contrast, prognosis is typically prediction
in the causal direction, meaning a future outcome predicted from current patient characteristics,
and here a shift in case-mix is a change in the distribution of patient characteristics. Importantly,
depending on the prediction direction, either calibration or discrimination is preserved under shifts
in case-mix, but not both. The crucial insight underlying our results is that a prediction model’s
discrimination depends on the distribution of the features given the outcome (X given Y ) and is
thereby invariant to changes in the marginal distribution of the outcome. Conversely, calibration
depends on the distribution of the outcome given the features (Y given X) and is thereby invariant
to changes in the marginal distribution of the features. See Figure 1 for a schematic overview.

Our result shows that the causal direction of the prediction has important implications for the
development, evaluation and deployment of prediction models. For example, when evaluating a
model used for prognosis across different settings, changes in discrimination are expected under
shifts in case-mix, but changes in calibration are not, and vice-versa for diagnostic models. When
re-evaluating a prognostic model in a different setting, a change in discrimination is expected and
thus no cause for concern. However, a marked change in calibration may warrant further research.
Another perhaps unexpected result is that when a model is evaluated across different environ-
ments, the observation that either discriminaton or calibration remains stable is a stronger sign
of robustness to changes in environment than when both remain stable. The reason is that when
both remain stable, this proves that the testing environments were not meaningfully different. Only
when either discrimination or calibration changes and the other is stable, we gain some confidence
that the model remains robust across different environments. This perspective helps developers
and guideline makers judge where and when a prediction model has dependable predictive perfor-
mance. Also, depending on the task and whether discrimination or calibration is more important,
prediction model developers may improve the robustness of their model to changes in case-mix by
only including variables in the prediction model that are either all causal or all anti-causal but not
mixed, when possible.

To introduce the framework, we first review the concepts of discrimination and calibration and
then we define changes in case-mix from a causal viewpoint. Next put the two pieces together
in a new framework and answer: when to expect what changes in predictive performance? We
illustrate the result with a simulation study and test the framework empirically in a systematic
review of 1382 prediction models, where we find that prognostic models indeed have more variance
in discrimination when tested in external validation studies. Finally we discuss how this theory can
be used in practice.

2



X: patient characteristics Y : future outcome

environment

causal direction

prediction direction

(a) DAG for prediction models predicting
in the causal direction, as in many progno-
sis settings (e.g. predict future heart at-
tacks based on current age and cholesterol
levels)

X: symptoms Y : diagnosis

environment

causal direction

prediction direction

(b) DAG for prediction models predicting
in the anti-causal direction as in many di-
agnosis settings (e.g. predict presence of a
current heart attack based on the presence
of chest pain and electrocardiography ab-
normalities).

calibration
discrim

ination

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

environment train test

(c) Between the training data and testing
data, the calibration remains the same (up-
per facet), but the discrimination changes
(lower facet)

calibration
discrim

ination

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

environment train test

(d) Between the training data and testing
data, the calibration changes (upper facet),
but the discrimination remains the same
(lower facet)

Figure 1: Overview of main results. Depending on the causal direction of the prediction, a shift in
‘case-mix’ may be defined as either a shift in the marginal distribution of the features X for causal
prediction (1a) or a shift in the marginal distribution of the outcome Y for anti-causal prediction
(1b). With these definitions, for models predicting in the causal direction, the calibration will
remain constant under case-mix shifts between the training data and the testing data but not the
discrimination (1c). For models predicting in the anti-causal direction the reverse is true (1d). The
calibration facets are calibration curves with on the horizontal axis the predicted probability and
on the vertical axis the actual probability. The discrimination facets are receiver-operating-curves
with on the horizontal axis 1 minus specificity and on the vertical axis sensitivity. DAG: directed
acyclic graph
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outcome (Y )
1 0

prediction (f(X) > τ)
1 true positive false positive
0 false negative true negative

sensitivity: P (f(X) > τ |Y = 1) specificity: P (f(X) ≤ τ |Y = 0)

Table 1: Confusion table. By specifying a threshold 0 ≤ τ ≤ 1 for a prediction model f : X → [0, 1]
and tabulating the results against the ground truth outcome Y ∈ {0, 1}, we get the confusion table
and can calculate metrics of discrimination such a sensitivity and specificity.

2 Notation and review of predictive performance: discrimi-
nation and calibration

We consider prediction models of a binary outcome Y using features X with a prediction model
f : X → [0, 1]. The features can come from an arbitrary (multi-)dimensional distribution.We will
denote environments with an environment variable E where for example E = 0 may be a general
practitioner setting, E = 1 a community hospital and E = 2 a university medical center [2]. With
P (.) we will denote (conditional) distributions or densities over random variables, for example
P (Y |X) denotes the distribution of outcome Y given features X.

2.1 Discrimination: sensitivity, specificity and AUC

The typical metrics of discrimination are sensitivity (sometimes called recall), specificity and AUC.
Sensitivity is the ratio of true positives over the total number of positive cases. Specificity is the ratio
of true negatives over the total number of negative cases. To calculate sensitivity and specificity,
we need to choose a threshold 0 ≤ τ ≤ 1 for the output of f(X) and label all f(X) > τ as positive
predicted cases and f(X) ≤ τ as negative predicted cases. This results in a 2 by 2 table with
predicted versus actual outcomes (sometimes called the ‘confusion table’), see Table 1. By varying
τ between 0 and 1 we get a range of values for sensitivity and specificity. Plotting these in the
receiver-operating-curve and calculating the area under this curve we get the popular AUC metric
or c-statistic. Note that for calculating sensitivity we only need the positive cases (Y = 1), and
for specificity we only need the negative cases (Y = 0). Measures of discrimination depend on the
distribution of the prediction (and thus the features) given the outcome. This immediately implies
that if we were to only change the ratio of positive and negative cases through some hypothetical
intervention, the sensitivity and specificity will remain unchanged, and thus the resulting AUC.
Therefore it is sometimes said that sensitivity and specificity are prevalence independent.

2.2 Calibration

Calibration measures how well predicted probabilities align with actual event rates. In words,
assume we take a particular value for the predicted probability of the outcome, say α = 10%. Then
if we gather all cases for which f(X) = α, then the model is calibrated for that value of α when the
fraction of positive outcomes in this subset is exactly α. A prediction model is perfectly calibrated
when this holds for all unique values that f(X) attains. For a formal definition, see Definition 1 in
the Appendix 6. Unfortunately, measuring discrimination with a single metric is much harder then
measuring discrimination for practical [3, 4] and theoretical reasons [5], a problem we will ignore.
However, fundamentally, calibration measures the alignment between f(X) and the probability of
the outcome given X. Measures of calibration are thus measures of the distribution of the outcome
given the features (Y given X).
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3 A causal framework for predictive performance under changes
in case-mix

Since discrimination depends on the distribution of the features given the outcome (X given Y )
but calibration on the distribution of the outcome given the features (Y given X), we may expect
metrics of discrimination and calibration to respond differently when changes occur in the marginal
distribution of X or Y . In this section we first formalize the notion of a shift in case-mix and how
this depends on whether a prediction is in the causal direction (future outcome given features) or
the anti-causal direction (e.g. disease given symptoms). Then we will draw the connection between
the two insights leading to our main result.

3.1 A shift in case-mix is a change in the marginal distribution of the
cause variable

Inspired by the principle of independence of cause and mechanism [1, 6], we define a shift in case-
mix between different environments (e.g. general practitioner versus hospital setting) as a change
in the marginal distribution of the cause variable. When the prediction is in the causal direction,
a shift in case-mix is a change in the marginal distribution of the features X, whereas when the
prediction is in the anti-causal direction it is a shift in the marginal distribution of the outcome Y .

Finally, the prediction problem could be neither causal or anti-causal, but confounded by another
variable Z, in that case the shift is in the distribution of the confounder Z. See Figure 2 for directed
acyclic graphs (DAGs) depicting these situations and Table 2 for an overview with examples. We
give a formal definition in the Appendix 2.

Table 2: different prediction settings

anti-causal causal confounded
shifted distribution Y X Z
typical setting diagnosis prognosis prognosis
example outcome pneumonia survival lung cancer diagnosis
example features temperature age yellow fingers
Figure 2a 2b 2c

X Y

E

(a) causal prediction

X Y

E

(b) anti-causal prediction

X Y

ZE

(c) confounded prediction

Figure 2: directed acyclic graphs for 2-variable prediction problems with a shift in case-mix, meaning
the environment variable only affects the marginal distribution of only the cause variable. The
prediction is always made from feature X to outcome Y , E denotes the environment.

Each of the DAGs in Figure 2 encodes different conditional idependencies. Specifically the
DAG in the causal direction (Figure 2a) implies that Y is independent of E given X. This entails
that the distribution P (Y |X) is transportable across environments, so for different environments
E = 0, 1, . . ., P (Y |X,E = 0) = P (Y |X,E = 1) = P (Y |X), but P (X|Y ) is not transportable:
P (X|Y,E) ̸= P (X|Y ). Conversely, in the anti-causal direction (Figure 2b) the distribution P (X|Y )
is transportable, meaning P (X|Y,E) = P (X|Y ), but not P (Y |X). In the confounded DAG (Figure
2c) neither P (Y |X) or P (X|Y ) is transportable.

In the DAGs in Figure 2 the environment variable influences the cause variable (X,Y or Z)
but not the effect variable (Y or X). Why exclude arrows from the environment to the effect
variable in the definition of a shift in case-mix? First, when viewed as a mechanistic description
of the data generating process, the principle of independence of cause and mechanism states that
the distribution of the cause variable is independent of the mechanism that produces the effect
variable [1]. Also, if there is an arrow from environment to the effect variable, neither P (Y |X) or
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P (X|Y ) are transportable across environments so nothing can be said regarding the calibration and
discrimination of a prediction model on an unseen environment based on data from the observed
environments only and the assumptions expressed in the DAG. Finally, in clinical settings it may
be reasonable based on temporal ordering and patient selection mechanisms to assume that at least
the distribution of the cause variable differs between environments, but maybe not the effect given
the cause. See the Appendix 6.1 for several concrete medical examples where these assumptions
may hold.

3.2 Main result: discrimination and calibration respond differently to
changes in case-mix depending on the causal direction of the predic-
tion

With the DAGs describing the different possible shifts in case-mix under consideration and the
definitions of discrimination and calibration we can now state our main result, of which the formal
versions are presented in the Appendix 6.

When predicting in the anti-causal direction (often with diagnosis predictions), a shift in case-
mix across environments means a shift in the marginal distribution of the outcome, and discrimi-
nation remains stable across environments but not calibration. Conversely, when predicting in the
causal direction (often with prognosis predictions), a shift in case-mix across environments means a
shift in marginal distribution of the features, and calibration remains stable, but not discrimination.

For prediction in the causal direction, when f is perfectly calibrated on an environment, it will
remain perfectly calibrated under shifts of the marginal distribution of the features (see Theorem 1
in the Appendix). Note that when f is not perfectly calibrated and this mis-calibration depends on
X, in general the average calibration will also change when predicting in the causal direction. An
important implication of this result is that discrimination or calibration may be preserved under
changes in case-mix, but typically not both1.

As a remark, we note that perfectly calibrated models obviously cannot be better calibrated in
other environments, so any change in calibration necessarily implies a worsening of calibration. For
discrimination, this is not automatically the case. In fact, models show better discrimination in
other environments then the training data when the distribution of outcome probabilities becomes
less concentrated around 50%.

4 Simulation and empirical evaluation

4.1 Illustrative simulation

Our main result has important implications when interpreting changes in predictive performance
across environments. To illustrate our result we now present a simulation study. Consider two
prediction models, one is a prognostic model predicting in the causal direction, the other a diagnostic
model predicting in the anti-causal direction. Denoting σ−1(p) = log p

1−p as the logit function and
N the Gaussian distribution, the data-generating mechanisms are:

prognosis: diagnosis:

Py ∼ Beta(αe, βe) y ∼ Bernouli(Pe)

x = σ−1(Py) x ∼ N (y, 1)

y ∼ Bernoulli(Py)

We evaluate both models in three hypothetical environments: a screening environment with
low outcome prevalence, a general practitioner setting with intermediate prevalence and a hospital
setting with high prevalence. For the prognosis model, the marginal distribution of X depends on
the environment through αe, βe, but not the distribution of Y given X. For the diagnosis model,
the marginal distribution of Y depends on the environment through Pe, but not the distribution of
X given Y . The different values for these parameters in the simulation are given in Table 3.

1For predicting in the causal direction, examples where the AUC remains constant across environments may be
constructed. Consider having a mixture of beta-distributions for P (Y |X) with their modes µ1 = 0.25 and µ2 = 0.75.
Shifting µ1 to 0 will increase AUC, shifting µ2 to 0.5 will decrease AUC. By shifting both modes at the same time,
these changes can be set to balance out.
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task parameter screening general practitioner hospital
prognosis α 2 5 10

β 20 10 20
diagnosis p 0.2 1/3 0.5

Table 3: Values for different simulation parameters in three hypothetical environments.

In Figure 3 we show the results of training a prediction model in the screening environment and
evaluating it either in the same environment (‘internal validation’) or in a different environment
(‘external validation’). For the prognostic model the calibration remains the same across environ-
ments; the discrimination changes across environments. For the diagnostic model, the reverse is
true.

By repeating this process for each of the three environments, each time training on one environ-
ment and evaluating on all environments for both the causal prediction model and the anti-causal
model, we get in total six models, each evaluated three times. We measure discrimination with
AUC and calibration error as the average absolute difference between the predicted outcome prob-
ability and the actual outcome probability for each observation: 1

N

∑N
i |P (Y = 1|X = xi) − f(xi)|

(analogous to the Integrated Calibration Error defined in [7]). Plotting these 18 points on 6 lines
in 2 dimensions leads to an interesting pattern, where the models predicting in the causal direction
are easily discernible from those predicting in the anti-causal direction (Figure 4). In the Appendix
6.2 we provide visualizations of P (Y |X) and P (X|Y ) for the different environments and tasks.

4.2 Empirical Study

As an empirical evaluation we re-used data from a published systematic review on prediction mod-
els in cardiovascular disease which included 2030 external validations of 1382 predictions models [8]
and whose data is publicly available at https://www.pacecpmregistry.org. The review investigated
changes in model performance when comparing the original publication with later external vali-
dation studies. The authors classified the prediction models as either ‘diagnostic’ or ‘prognostic’
(indicated by a follow-up time of less than 3 months, 3–6 months or more than 6 months). Selecting
only prediction models with one or more validations and information on AUC in both the original
study and validation study, and with information on model type (diagnostic versus prognostic),
1170 validation studies remained of 342 prediction models, 16 of which were validation studies of
11 diagnostic models. Comparing the AUC in the original study (AUC0) with external validation
studies (AUC1), we calculated the relative difference in AUC as suggested by the authors:

δ :=
(AUC1 − 0.5) − (AUC0 − 0.5)

AUC0 − 0.5
.

Our framework predicts that for diagnostic models that predict in the anti-causal direction, the
AUC remains the same so AUC0 = AUC1, thus VAR(δ) = 0, but not for prognosis models that
predict in the causal direction. The studies in this systematic review are likely not perfectly causal
or anti-causal, and because of sampling variance, variation in AUC will occur. Still we expect the
variance of δ to be higher for prognosis models than for diagnosis models. In these data this was
indeed the case with VAR(δprognostic) ≈ 8.2∗VAR(δdiagnostic) = 0.019, 95% confidence of ratio: 3.41
- 15.10, p-value for F-test < 0.001. Unfortunately the review provided no quantitative measures of
calibration so a similar comparison of the variance of changes in calibration could not be made.

The code needed to reproduce the simulation experiment and empirical evaluation are available
at Zenodo.

5 Related work

The notion that calibration is stable under shifts in the distribution of the cause variables has long
been appreciated (e.g. [6, 9, 10]). Much of the theory in this paper is inspired by Schölkopf’s
work on causal and anti-causal learning [6]. This work connects the general framework to the
medical setting in two ways: we define a familiar term ‘case-mix’ in a formal causal language, and
then derive how two canonical metrics of predictive performance (discrimination and calibration)
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Figure 3: Overview figure of illustrative simulation experiment of a model trained on data from a
screening environment, and evaluated on either the screening environment (‘internal validation’) or
the general practitioner (GP) environment or the hospital environment (‘external validation’), with
increasing outcome probabilities. For models predicting in the anti-causal direction (e.g. diagnostic
models), a shift in case-mix entails a shift in the distribution of the outcome, so discrimination
remains the same but calibration changes. For models predicting in the causal direction (e.g.
prognosis models), a shift in case-mix entails a shift in the distribution of the features, so calibration
remains the same but the discrimination changes. The discrimination facets are receiver-operating-
curves with on the horizontal axis 1 minus specificity and on the vertical axis sensitivity. The
calibration facets are calibration curves with on the horizontal axis the predicted probability and
on the vertical axis the actual probability.
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respond differently to changes in case-mix for causal prediction models (prognosis) and anti-causal
models (diagnosis).

Prior work noted that prediction models that are calibrated in multiple environments are prov-
ably free from anti-causal predictors [10]. Our focus is in the reverse direction: when to expect
stable calibration across environments. Jaladoust and colleagues derived general bounds for func-
tionals of the target distribution in a new environment [11]. Our work describes when certain
specific functionals from the distributions (discrimination and calibration) are stable across set-
tings, tailored to typical needs in the (medical) prediction model setting. Other prior work requires
detailed assumptions on the causal relationships between variables [12], or access to data from
multiple environments. Subbaswamy consideres loss functions of the form l(ŷ, y) which implicitly
depend on the joint distribution of X,Y trough the expectation L = EX,Y [l(ŷ, y)]. Our work is
focused on metrics that are direct functionals of the conditional distribution Y |X and X|Y . Also,
Subbaswamy focusses on min-max optimality.

Our framework also provides a new perspective on the results of the study by Fehr at al [13].
They experimented with prediction models that contained either causal factors of the outcome
(related to our prognosis models), anti-causal factors (related to our diagnosis models), or a com-
bination of both. The performance of different prediction models was evaluated under different
shifts in variables that were at the same time a direct cause of the outcome and a cause of other
variables. Fehr et al found that for models predicting only with cause variables, the calibration is
stable under interventions on only cause variables, as directly explained by our main result. When
predicting with anti-causal factors, they observed that under interventions on the cause variables,
the calibration degrades for models that are well calibrated on the training data. This setting is
the closest to our diagnostic setting, though technically it is a mix of the anti-causal DAG 2b and
the confounded DAG 2c.

6 Discussion

We present a novel causal framework for understanding changes in prediction model performance
under shifts in case-mix, by defining a shift in case-mix as a change in the marginal distribution of
the cause variable. This leads to a new understanding of why in certain situations the discrimination
of a model may be relatively stable when evaluated in a different setting, but not the calibration,
and vice-versa.

Limitations are that the definition of a shift in case-mix is an abstraction and pure interventions
on only either the features or the outcome may be unrealistic in practice. Many diagnostic prediction
models may contain features that have a causal path to the diagnosis (e.g. age), or ‘risk factors’ for
the disease that are not caused by the presence or absence of the disease. Also, the ‘disease’ itself
may be an abstraction, and the diagnosis used in medical practice may be a combination of effects
of an underlying biological process. Systematic reviews of diagnostic models indeed show variation
in sensitivity and specificity with variation in disease prevalence, a phenomenon also referred to as
the spectrum-effect [14]. Still, when compared with prognostic models, diagnostic models had lower
variability in discrimination in our empirical study. The current empirical evaluation was limited,
and classifying diagnostic models as anti-causal and prognostic models as causal may be too crude.
Also, no quantitative data on calibration were available to test whether calibration was more stable
for prognostic models. Future empirical studies of externally evaluated prediction models will shed
more light on how this theory pans out in practice. Mis-calibration may occur when variables not
included in the model are also shifted between environments.

What are the implications of the causal case-mix framework for different stakeholders? A main
use of this new causal case-mix framework is to provide an explanation of (lack of) expected and
observed differences in prediction model performance across environments. For prediction model
developers, this framework provides a new way to think about the features included in a prediction
model. In some settings such as triaging patients in emergency room for early medical evaluation,
the utility of a prediction model depends mostly on its discrimination. In other settings such as
cardiovascular risk management, a prediction model’s utility depends on its calibration. Depending
on this utility function, prediction model developers may opt to include mostly causal or anti-
causal features in a prediction model, if dependable performance across environments is desired.
The framework adds another perspective on the discussion on when and where to re-calibrate a
prediction model [15, 16]. When calibration is important and the model does include anti-causal
features, it is likely necessary to always recalibrate the model when taking it to a new environment,
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in line with many recommendations [17]. However, when discrimination changes for a prediction
model in the causal direction, this may not warrent a re-fitting of the model as this change is to be
expected under a shift in case-mix. A decrease (or increase) of discrimination may be indicative of
a shift in the data, meaning more (or less) patients with probabilities closer to 50%, than of a bad
model.

For researchers that evaluate prediction models and policy makers, it was long known that no
models are robust to arbitrary changes in distribution. This framework implies that a subset of
models should have stable calibration or discrimination. For example, observing a stable discrimi-
nation of a diagnostic model with anti-causal features in several different environments may provide
confidence that the model is indeed robust to environmental changes. At the same time, this model’s
calibration should not be stable across evaluations. Whereas normally a stable calibration would
be seen as a re-assuring sign, having both calibration and discrimination stable across environments
is a sign that the environments are not meaningfully different at all. A stable discrimination paired
with unstable calibration (or the other way around) is a stronger sign of robustness to changes in
environment than when both are stable, as this would only occur when the environment are too
similar.
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Appendix

Definitions

Definition 1 (calibration). Let P (X,Y ) be a joint distribution over feature X and binary outcome
Y , and f : X → [0, 1] a deterministic prediction model. f is perfectly calibrated with respect to
P (X,Y ) if, for all α ∈ [0, 1] in the range of f , EX,Y∼P (X,Y )[Y |f(X) = α] = α.

Definition 2 (case mix). Let Z,X, Y be random variables and E an environment variable. Assume
one of the three following causal directed acyclic graphs labeled causal, anti-causal and fork (shown
also in Figure 2):

1. causal: E → X → Y

2. anti-causal: E → Y → X

3. fork: E → Z → X;Z → Y

Let PE(.) denote the distribution of variable . in environment E. A shift in case-mix across envi-
ronments e, e′ ∈ E is a shift in the distribution of the direct child of E in the DAG, meaning a shift
in:
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1. PE(X) when DAG = causal

2. PE(Y ) when DAG = anti-causal

3. PE(Z) when DAG = fork

Remark 1 (conditional independencies). The causal DAGs enumerated in Definition 2 imply the
following conditional independencies regarding random variables X,Y :

causal anti-causal fork
PE(X) vs P (X) = ̸= ̸=
PE(Y ) vs P (Y ) ̸= = ̸=
PE(Y |X) vs P (Y |X) = ̸= ̸=
PE(X|Y ) vs P (X|Y ) ̸= = ̸=

Theorems

We now describe our main result.

Theorem 1 (perfectly calibrated models remain perfectly calibrated under marginal shifts in X).
Given binary Y , prediction model f : X → [0, 1] and environment E ∈ {train, test}. Assume
X takes on values from a measureable space X with measures ϕtrain(x), ϕtest(x) on the training
and testing environment, and assume ϕtest(x) << ϕtrain(x) (the support of the test distribution is
contained in the support of the training distribution). Assume PE(Y,X) = PE(X)P (Y |X) (shift in
P (X) but not P (Y |X) between environments). Define the miscalibration of f under PE for value
X = x as:

ξ(x) := |f(x) − P (Y = 1|X = x)| (1)

Then the integrated calibration index (ICI) [7] on distribution PE is:

ICIE = EX∼PE(X) ξ(x) (2)

Theorem statement: a model that is perfectly calibrated on the training distribution (i.e. ξ(x) =
0 ⇐⇒ ϕtrain(x) > 0) remains perfectly calibrated in the test distribution:

ICItrain = ICItest = 0 (3)

Proof of theorem 1. By assumption we have ϕtrain(x) > 0 =⇒ ξ(x) = 0, because ϕtrain(x) >
0 =⇒ ϕtest(x) > 0 we also have that ϕtest(x) > 0 =⇒ ξ(x) = 0 (f is calibrated for all values of x
in the test distribution). Denote supptest(X) the subset of X where ϕtest(x) > 0. By definition of
ICI we have that

ICItest = EX∼Ptest(x) ξ(x) (4)

=

∫
supptest(X)

ξ(x)dϕtest(x) (5)

=

∫
supptest(X)

0dϕtest(x) (6)

= 0

∫
supptest(X)

dϕtest(x) (7)

= 0 ∗ 1 (8)

= 0 (9)

Theorem 2 (discrimination is constant under marginal shifts in Y ). Given binary outcome Y , pre-
diction model f : X → [0, 1] and environment E ∈ {train, test}. Assume PE(Y,X) = PE(Y )P (X|Y )
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(marginal shift of Y but not X|Y ). Furthermore assume 0 < PE(Y = 1) < 1 (marginal distribution
of Y in both distributions is non-deterministic). Then for all thresholds 0 ≤ τ ≤ 1:

senstest(τ) = senstrain(τ) (10)

spectest(τ) = spectrain(τ) (11)

And also
AUCtrain = AUCtest (12)

proof of theorem 2. Theorem 2 follows directly from the fact that sensitivity: P (f(X) > τ |Y = 1),
specificity: P (f(X) ≤ τ |Y = 0) and Ptrain(f(X)|Y = y) = Ptest(f(X)|Y = y).

6.1 Examples

Clinical examples of when the definition of a shift in case-mix as in Definition 2 may apply across
different environments.

6.1.1 Examples in the causal direction

Prediction of the occurrence of a cardiovascular event in the coming 10 years based on age and the
presence of diabetes at baseline.

1. train environment: general practitioner

2. test environment: a diabetes out-patient clinic

6.1.2 Examples in the anti-direction

Example 1: prediction of the presence of a stroke based on computed tomography imaging of the
brain:

1. train environment: secondary care hospital

2. test environment: stroke center where patients are referred when they have stroke symptoms

Example 2: Diagnosing sexually transmittable disease (see Figure 5).

X Y Y0

E

(a) example with all model variables

X Y

E

(b) resulting DAG when marginalizing over Y0

Figure 5: Example setting of diagnosing a sexually transmittable disease (STD, = Y ) with a blood
test (= X) in either general public setting (5a) or in a HIV-positive clinic (5b). Patients with
previous STDs such as HIV (Y0) have a higher risk of future STDs, summarized with the arrow
from Y0 to Y . Y0 = 1 is a selection criterion for the HIV-clinic, meaning that only patients with
a prior STD get seen at the HIV-clinic. Treating Y0 as not observed (thus marginalizing it out)
results in the DAG in 5b

6.2 Additional figures of simulation study
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Figure 6: Marginal distribution P (Y = 1) in different environments, given by beta-distributions
with parameters listed in Table 3.
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Figure 7: Conditional density of P (X|Y = y) in the diagnosis or the prognosis simulation setting
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Figure 8: Conditional distribution of P (Y = 1|X = x) in the diagnosis or the prognosis simulation
setting.
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