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Abstract

Oncologists are faced with choosing the best treatment for each patient, based on the available evidence from randomized controlled trials (RCTs) and
observational studies. RCTs provide estimates of the average effects of treatments on groups of patients, but they may not apply in many real-world scenarios
where for example patients have different characteristics than the RCT participants, or where different treatment variants are considered. Causal inference
defines what a treatment effect is and how it may be estimated with RCTs or outside of RCTs with observational e or ‘real-world’ e data. In this review, we
introduce the field of causal inference, explain what a treatment effect is and what important challenges are with treatment effect estimation with observational
data. We then provide a framework for conducting causal inference studies and describe when in oncology causal inference from observational data may be
particularly valuable. Recognizing the strengths and limitations of both RCTs and observational causal inference provides a way for more informed and indi-
vidualized treatment decision-making in oncology.
� 2024 The Authors. Published by Elsevier Ltd on behalf of The Royal College of Radiologists. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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Why Causal Inference?

Everyday, oncologists make medical decisions that
change the future outcome of a patient. Whether it is
ordering a diagnostic test, prescribing medication, or
scheduling a follow-up visit, each decision is an interven-
tion that changes a patient’s future outcome. The benefits
and harms of such an intervention, or with a generic word
treatment, determine the treatment effect, meaning the
causal effect of giving that treatment. For treatment
decision-making, clinicians appraise treatments by
balancing their effects, preferably on a per-patient basis.
Estimates of these treatment effects for groups of patients
generally come from randomized controlled trials (RCTs).
However, clinicians encounter patients that are not repre-
sented in the published RCTs, for instance because RCTs
tend to include younger and fitter patients [1e3]. Also, cli-
nicians may consider treatment variants that were not
tested in RCTs or may have doubts whether a certain
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treatment that was shown to be effective on average is also
beneficial for this individual patient. In these cases, esti-
mates of the treatment effects are still required to make an
informed treatment decision.

In addition, clinicians and policy makers fear that treat-
ment effect estimates fromRCTsmaynot translatedirectly to
clinical care, for instance because treatmentsmay be applied
more strictly according to protocol in trials than in day-to-
day care. Literature describes the discrepancy between
outcomes in RCTs and standard clinical care as the efficacy-
effectiveness-gap [4]. Real-world evidence [5] is promoted
to evaluate what is called the real-world effectiveness of
treatments. This approach aims to infer treatment effects
outside of RCTs, namely in observational studies.

Because treatment effect estimates are needed for each
treatment decision it is important to have a good under-
standing of what a treatment effect is. And as not all these
decisions are covered by RCTs, we should know how
treatment effects may be estimated inside and outside of
RCTs. This is the topic of the field of causal inference.

In this review, we describe what causal inference is, what
a treatment effect is, how to perform a causal inference
study and in what situations in oncology causal inference
from observational data may be particularly useful.
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What is Causal Inference?

Causal inference is a field of science that defines exactly
what a causal question is and how it may be answered from
data. At the same time, causal inference is used as a verb for
making an inference (i.e. an estimate or claim) about a causal
quantity.We provide a glossary of terms important in causal
inference in Table 1.

What is the Individual Treatment Effect?

To define a treatment effect, for example comparing
treatment A with treatment B, we envision two possible
future outcomes for a single patient: one after giving
treatment A and one after giving treatment B. These future
outcomes that would be observed after giving a certain
treatment are called potential outcomes.

For an individual patient, the individual treatment effect
of treatment A versus treatment B is the difference between the
potential outcomes corresponding with treatment A and
treatment B.

See Figure 1A for an illustration. In reality, we only
observe the outcome that followed the actually given
treatment but not the other potential outcome, so we
cannot observe this individual treatment effect (Figure 1B).
This lack of observing both potential outcomes in one in-
dividual is a fundamental issue in causal inference.

Estimating the Average Treatment Effect in an RCT

Whereas estimating individual treatment effects is
generally impossible, we may be able to estimate the
Table 1
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average treatment effect in a certain population, which is the
average of the individual treatment effects in this popula-
tion. The ideal way to estimate the average treatment effect
is by conducting an experiment called a randomized
controlled trial (RCT). In an RCT, we recruit a representative,
random sample of the population of interest and randomly
assign the patients to treatment A or B and later measure
their outcome. For the patients in the RCT we never observe
both the potential outcome of treatment A and treatment B
so we cannot estimate their individual treatment effects.

However, the outcomes in the treatment A group have
the same distribution as the outcomes that would have been
observed if the treatment B group would have gotten
treatment A instead, and vice-versa. The potential outcomes
are said to be exchangeable between the treatment arms as a
consequence of the randomization of the treatment allo-
cation. Because of this exchangeability we can estimate the
average treatment effect by comparing the average out-
comes of group A with those of group B. Other common
terms for ‘exchangeability’ are ignorability or uncon-
foundedness. See Figure 2 for an illustration of estimating
the average treatment effect in an RCT.
Estimating Treatment Effects Outside of RCTs

Now that we defined what a treatment effect is and how
it is ideally estimated in an RCT, a natural question is
whether it is possible to estimate treatment effects from
non-RCT data such as historical patient cohorts (i.e. real-
world data). These datasets are called observational to
highlight the contrast with the experimental nature of RCTs.
The fundamental difference between observational studies
ription

of science that defines causal effects and studies how to estimate
from data

ing an inference (estimate/claim) about a causal question
rimental study where treatments are allocated by randomization
y where treatments are not allocated through randomization but
ugh standard clinical care
rence in potential outcomes between e.g. treatment A and
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ble that influences both the treatment decision and the outcome
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Fig 1. Illustration of the individual treatment effect. For an individual patient, the individual treatment effect of treatment A versus treatment B
is the difference in potential outcomes that would be observed under treatment A or treatment B (1a). In practice only one potential outcome is
observable: the one concordant with the actually given treatment, so the individual treatment effect cannot be estimated from the observed data
(1b).
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and RCTs is that in observational studies, treatments are
allocated according to regular clinical care, whereas in RCTs
the treatments are allocated by randomization. We explain
treatment effect estimation from observational data with a
stylized example of stage III non-small cell lung cancer.

Example: Concurrent Versus Sequential Chemoradiation in
Lung Cancer

The primary treatment for stage III non-small cell lung
cancer consists of both chemotherapy and radiotherapy (i.e.
chemoradiation). This combination treatment can be given
Please cite this article as: van Amsterdam WAC et al., Causal Inference i
doi.org/10.1016/j.clon.2024.07.002
sequentially by first giving chemotherapy and then radio-
therapy, or concurrently by giving chemotherapy and
radiotherapy at the same time. Prior RCTs established that
concurrent treatment leads to better overall survival than
sequential treatment [6]. However, concurrent treatment is
not endured well by patients with lower overall fitness, so
for a patient with low overall fitness, sequential treatment
may be preferred as the chance of successfully completing
the treatment regimen is higher. Patients in higher overall
fitness get concurrent chemoradiationmore often in clinical
practice, but at the same time higher overall fitness leads to
better overall survival regardless of the given treatment.
n Oncology: Why, What, How and When, Clinical Oncology, https://
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Fig 2. Average treatment effect estimation in a randomized controlled trial. Whereas individual treatment effects cannot be estimated from RCTs
as only one potential outcome is observed per patient, the average of the individual treatment effects (i.e. the average treatment effect) can be
estimated by comparing the average outcomes in each treatment arm.
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This means that the potential outcomes of patients treated
with concurrent treatment are not exchangeable with those
who got sequential treatment. Imagine forcing all patients
who would normally get sequential treatment to get con-
current treatment instead. Because this patient group has
lower overall fitness on average, their outcomes would not
have the same distribution as those who normally get
concurrent treatment.
Confounding: The Central Problem in Observational Causal
Inference

In the lung cancer example, overall fitness is a confounder
of the treatment-outcome relationship because it in-
fluences both the treatment decision and the outcome.
Confounders extinguish exchangeability and thereby hind-
er treatment effect estimation. Whereas, in RCTs, the
average treatment effect may be estimated because the
outcomes in the treatment groups are exchangeable due to
the randomized treatment allocation, for observational
data, this is not automatically the case.

There is, however, a potential solution. Exchangeability
may still be achieved if we are willing to make assumptions
about the confounders. In the lung cancer example, assume
that overall fitness is the only confounder, and for simplicity
that there are only two levels of overall fitness: high and
low. Furthermore assume that in both levels of overall
fitness, at least some patients got either treatment. With
these assumptions, within strata of overall fitness, the po-
tential outcomes of patients who had concurrent treatment
or sequential treatment are exchangeable. The potential
outcomes are thus said to be exchangeable conditional on
Please cite this article as: van Amsterdam WAC et al., Causal Inference i
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the confounder overall fitness. The average treatment effect
for the entire population can be estimated by first esti-
mating the treatment effect in both strata of overall fitness
and then taking the average of these estimates weighted by
the prevalence of each level of overall fitness.

An important limitation with treatment effect estimates
from observational data is that it is always possible that, in
addition to overall fitness, there was another confounder
that was unknown to the researchers or unmeasured. This
unmeasured confounder breaks the exchangeability con-
ditional on overall fitness, which means that the above
procedure for estimating the treatment effect yields incor-
rect results. Unfortunately, in non-experimental data, it is
always possible that unmeasured confounders exist and
there is no way to test whether this occurs in a particular
situation, so treatment effect estimation from observational
data relies on assumptions regarding the confounders. The
assumption of no unobserved confounding is called an
identifiability assumption.
Graphical Tools in Causal Inference

The relationships between the variables of importance in
our example can be depicted in a causal directed acyclic
graph (DAG) as shown in Figure 3. In a DAG, variables are
denoted as nodes and causal relationships between them
are denoted with arrows that go from a cause variable (e.g.
treatment) to an effect variable (e.g. overall survival).

Next to confounders, there are other types of variables
important to treatment effect estimation such as colliders.
Colliders are variables that are caused by two or more other
variables. When stratifying a population based on the value
n Oncology: Why, What, How and When, Clinical Oncology, https://



Fig 3. DAG for the stylized example of stage III non-small cell lung cancer, describing the observational setting without (3a) and with (3b)
unobserved confounding, and the RCT regime (3c). In the first observational setting (3a), the observed confounder overall fitness influences the
treatment decision and the outcome and exchangeability holds conditional on this observed confounder. In the second observational setting (3b)
there is also an unobserved confounder so exchangeability no longer holds conditional on the observed confounder ‘overall fitness’. In the RCT
setting, no variables influence the treatment decision due to the randomization, ensuring exchangeability. DAG: causal directed acyclic graph;
RCT: randomized controlled trial.
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of a collider, for example by only considering patients with a
certain value of the collider variable, or by including the
collider variable in a regression analysis, colliders induce
correlations between the variables that cause it. For
example, consider investigating whether a good patient-
physician relationship improves health-related quality of
life in cancer patients [7]. It may be that both having a good
relationship with the treating physician and having a good
quality of life increase the willingness of a patient to fill in
questionnaires. Then having a filled-in questionnaire is a
collider with at least these two causes, see Figure 4. Let’s
assume there is no causal effect of relationship quality on
Please cite this article as: van Amsterdam WAC et al., Causal Inference i
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quality of life. For some patients who filled in the ques-
tionnaire, the reason they filled it in is either having a good
relationship or having a good quality of life. Thus in the
subgroup of patients who filled in the questionnaire, a good
relationship and good quality of life have a negative corre-
lation regardless of the absent causal effect.
How to Conduct a Causal Inference Study?

Armed with the definition of a treatment effect and
exchangeability, we now sketch a general framework for
estimating treatment effects.
n Oncology: Why, What, How and When, Clinical Oncology, https://



Fig 4. DAG and simulated data with a collider: QoL questionnaire
filled in. 4a: Hypothetical DAG where the quality of the patient-
physician relationship has no causal effect on quality of life, but
both improve the willingness of patients to fill in QoL questionnaires.
4b: When only considering patients with a filled-in QoL question-
naire (i.e. conditioning on the collider), there appears to be a negative
correlation between patient-physician relationship quality and QoL.
DAG: causal directed acyclic graph; QoL: quality of life.
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Step 1: Define Question and Target Trial

Each causal question includes an intervention. A useful
framework for structuring causal inference studies is to
imagine the target trial that randomizes this intervention of
interest. The target trial is the ideal RCT that would allow to
answer the research question. The design for this target trial
should have a description of the trial protocol, including
patient eligibility criteria, treatments/interventions,
outcome, follow-up and statistical analysis [8].

Step 2: Gather Data

The next question is whether it is possible to run the
target trial. When it is feasible to run an RCT, this is pref-
erable for treatment effect estimation. If there is observa-
tional data available from patients who had the treatments
of interest, observational causal inference studies may
inform the design of the RCT. For example by using an es-
timate of the treatment effect from the observational study
to inform sample size calculations. Researchers should
gather previous evidence, most notably existing RCTs on the
treatments in question, even if there is for example a slight
variation of the treatments between the RCTand the current
research question, or the patients from the published RCTs
come from a different patient population. Further
Please cite this article as: van Amsterdam WAC et al., Causal Inference i
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recommendations for the design and analysis of RCTs are
out of scope for this review and for the remainder we as-
sume running an RCT is not possible so the study relies on
observational data. We assume access to observational data
on patients who underwent the interventions under
question.

Step 3: Formalize Assumptions

In the absence of an RCT, formalizing the identifying as-
sumptions is crucial to causal inference. This includes care-
fully analyzing the decision process surrounding the
intervention in clinical practice with domain experts and
clinicians that actually make the treatment decisions.
Relevant pre-existing evidence should also be incorporated
in this stage. Preferably, the researchers and domain experts
create a DAG with the relevant variables based on the
background knowledge. There is no consensus on best
practices for constructing a DAG, though some guidance
exists. Specifically, “Evidencesynthetis for Constructing
DAGs” is a framework for constructing a DAG, starting with
a systematic review of studies relevant to the question, and
then applying a structured process for creating a DAG based
on these studies [9]. Whatever approach is taken, re-
searchers may end up with multiple possible sets of iden-
tifying assumptions. Conclusions following these different
alternatives should be compared as described later.

Step 4: Causal Inference Method

A crucial question is whether there is a set of observed
variables that results in conditional exchangeability (i.e. a
valid adjustment set), meaning these variables tackle con-
foundingwhen adjusted for. Algorithms that implement the
rules of do-calculus [10] can automatically determine
whether a valid adjustment set exists from a DAG.

If a valid adjustment set exists, there are many ap-
proaches to treatment effect estimation. For low-
dimensional discrete adjustment variables and treatment,
this can be done by averaging the treatment effect in strata
of the adjustment variables as described earlier in the lung
cancer example. For other types of variables, often para-
metric assumptions need to be made. The average treat-
ment effect can then be estimated through outcome
modeling including all adjustment variables. Another
approach is by creating a prediction model for the treat-
ment based on these variables, called a propensity score
model. By reweighting the population with the inverse
propensity score the average treatment effect may be
estimated.

Step 5: Sensitivity Analyses

The identifiability assumption of no unobserved con-
founding is fundamentally not testable. Instead, to assess
the impact of potential violations of this assumption one
can formulate sensitivity analyses [11]. An example of a
sensitivity analysis is to assume there is an unobserved
confounder with a certain association with the treatment
n Oncology: Why, What, How and When, Clinical Oncology, https://
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and the outcome. Using computational methods, the result
of this unobserved confounder on the treatment effect es-
timate can be calculated. By defining a range of potential
violations of the identifying assumptions, one can get a
range of possible effect estimates. Note that sensitivity an-
alyses again depend on assumptions, which must be
grounded in background knowledge.
Step 6: Statistical Inference

Once the main analysis and sensitivity analyses are
specified, the statistical inference can proceed. In this phase,
“causal inference” is reduced to statistical inference on a
causal question. All considerations relevant to statistical
inference apply here, such as handling missing data, sta-
tistical significance and multiple testing. However, the
requirement of conditional exchangeability can complicate
the analysis. In the above example of quality of life ques-
tionnaires, only considering patients who filled in the
questionnaire (i.e. the frequently chosen “complete-cases”
approach) induces a negative correlation between the var-
iables of interest. Without going into details, in this
example, the (absence of a) causal effect can be recovered
by reweighting observations by the inverse probability of
having filled in the questionnaire. Such situations require
careful causal and statistical consideration.
Step 7: Interpret

The results of the main analysis should be interpreted in
the context of the sensitivity analyses. Is the direction of the
treatment effect (favoring harm or benefit) consistent in all
sensitivity analyses? When researchers had multiple
possible sets of identifying assumptions the conclusions of
the resulting analyses should be compared. As the identi-
fying assumptions are typically not testable from the data,
picking one approach (e.g. one of the possible DAGs) as the
best answer is generally not possible. If the results from
different approaches are qualitatively aligned this improves
credibility of the estimates. Next, the results should be
compared with existing RCT data if available in the light of
available background knowledge. If the results deviate from
the RCT data, is this expected by the background knowl-
edge? For instance, a deviation may be expected when the
populations of the observational study and the prior RCTs
differ in aspects thatmay change the effect of the treatment.
If the results indicate a stronger or weaker effect of treat-
ment in some subpopulations, this may warrant conducting
an RCT to confirm the results.
Opportunities and Challenges for Causal
Inference in Oncology

We now turn to what are unique opportunities and
challenges for causal inference in oncology. Though causal
inference subsumes treatment effect estimation from RCTs,
we focus here on causal inference from observational data.
Please cite this article as: van Amsterdam WAC et al., Causal Inference i
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Challenges for Causal Inference in Oncology

Treatment decisions in oncology depend on the overall
fitness of a patient, but this is not accurately recorded for
research. Thus for causal inference from observational data,
methods based on proxy variables [12,13] or instrumental
variables [14] may be required in many settings.

When Observational Causal Inference May Be of Particular
Value in Oncology

Though RCTs have distinct advantages for treatment ef-
fect estimation, we highlight several settings where causal
inference from observational data may augment RCT
evidence.

A New Biomarker

RCTs are generally designed with the minimal sample
size required to estimate the average treatment effect in a
certain population. However, for clinical decision-making
the treatment effect conditional on patient characteristics
is of more value, but this cannot be estimated reliably from
the RCTs because their sample size is too small. To indi-
vidualize treatment decision-making in oncology, there is
much interest in discovering biomarkers that help stratify
patients into those who benefit more or less from certain
treatments. Whether a biomarker is based on molecular
tests, medical imaging, serum markers or clinical variables,
its association with the treatment effect should be studied
in observational data before a new RCT that incorporates
the biomarker is warranted.

Generalization to Other populations

RCTs may be conducted in populations that do not mimic
the real-world population of a practicing oncologist, for
instance, because RCTs tend to include younger and fitter
patients, or because the RCTs were done in a different
country or health system. An important question is whether
the RCT estimate is transportable to the real-world popula-
tion [15]. Observational causal inference studies may pro-
vide evidence on whether this is likely the case and thus
whether the RCT results apply in the real-world population.

Risk Based Treatment Decisions

Treatments are valued by weighing their benefits (e.g.
improved overall survival) against the harms and costs
associated with giving the treatment. The benefit a treat-
ment can have is limited by the risk of an adverse outcome
when deciding not to give (additional) treatment, some-
times called the untreated risk. One example where this is
relevant is the prescription of adjuvant therapy to reduce
the risk of recurrence following breast cancer surgery: some
patients have a very low risk of recurrence after surgery and
can thus expect very little benefit from adjuvant chemo-
therapy. Whereas RCTs often estimate the average treat-
ment effect on a relative scale, for example with a risk ratio,
n Oncology: Why, What, How and When, Clinical Oncology, https://
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hazard ratio or odds ratio, the benefit of a treatment is
determined by its reduction of the risk of adverse outcomes
on an absolute probability scale [16]. A common assump-
tion is that the relative treatment effect is constant in a
population, but the untreated risk varies with patient
characteristics [17]. With a constant relative treatment ef-
fect, the effectiveness of a treatment on an absolute prob-
ability scale will vary for patients who have different
untreated risks. This means that the cost-benefit trade-off
and thus the treatment decision may be different depend-
ing on a patients’ untreated risk. This principle is applied in
prescribing chemotherapy after breast cancer surgery using
for example Predict [18], but also in cardio-vascular risk
management [19]. Estimating this untreated risk is prefer-
ably done in the control arm of an RCT as this is what the
untreated risk represents. However, RCTs are generally not
sufficiently large to estimate this risk withmuch granularity
depending on several patient characteristics. Also, the RCTs
may not have measured all relevant pre-treatment patient
characteristics determining the untreated risk. Most risk-
prediction models such as Predict were therefore devel-
oped in large observational datasets but since they aim to
predict outcomes under the hypothetical intervention of
not giving (adjuvant) treatment, these approaches require
causal inference [20].
Table 2
Table with additional potential applications of (observational)
causal inference in oncology

Application Description

iterative
changes

Small changes in treatment protocols such as
radiotherapy parameters can improve
outcomes but it is infeasible to conduct an RCT
for each possible change.

drug
repurposing

Medications that have been on the market for
different indications are sometimes suspected
of having anti-cancer effectiveness. This should
be studied in observational data before running
a new RCT with the medication.

checking
consistency

The experimental setting of RCTs is different
from day-to-day clinical care and thismay affect
how treatments are given, which in turn
changes the treatment effect between the RCT
and the real-world setting. Observational causal
inference studies can investigate the treatment
decisions, treatment protocol violations and
treatment effect directly in the ‘real-world’
setting.

rare and late
events

As RCTs are bounded in sample size and follow-
up time, rare events and late complications of
treatments may not become evident from RCTs
but require observational monitoring studies to
make causal inferences about these effects.

counterfactual
questions

Counterfactual questions are not answerable
directly even from RCTs and require explicit
causal modeling. A prototypical counterfactual
question is “given that this patient got
treatment A and died 1 year later, would they
have lived longer if they would have gotten
treatment B instead?”

RCT: randomized controlled trial.
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Other Applications of Causal Inference in
oncology

Prediction-Under-Intervention

Predicting the untreated risk of an outcome is a special
case of prediction-under-intervention, where the goal is to
predict outcomes under a hypothetical intervention.
Instead of providing treatment effect estimates in terms of
differences in expected outcomes between treatments,
predicting absolute outcomes after each possible treatment
may help counseling patients on the different treatment
options. Building models for prediction-under-intervention
requires large-scale datasets, which may be harder to attain
from RCTs than from observational data, again motivating
observational causal inference studies.

In addition to the above questions concerning treatment
effect heterogeneity, we briefly mention several other use
cases of observational causal inference in oncology inTable 2.
Conclusion

RCTs are the best study design for treatment effect esti-
mation as randomization of treatment allocation ensures
exchangeability, but RCTs also have important limitations
for treatment decision-making in oncology. By under-
standing these limitations and the possibilities of causal
inference with observational data, decision-making in
oncology can go further than allowed by the classical
distinction that “RCT estimates are causal but observational
estimates are associations”, and benefit from both RCT ev-
idence and evidence from well-conducted causal inference
studies in observational data.
Other Resources

We now provide some additional resources on causal
inference. Excellent books introducing the field of causal
inference are the Book of Why [21] and What If? [22].

The topic of causal inference is gaining attention in
oncology [23,24]. Moodie describes methodological chal-
lenges in causal inference typical to oncology, such as
having censored time-to-event outcomes, competing risks
and time-varying treatments, though focuses the attention
mainly on occupational hazards for developing cancer [23].
Van Amsterdam and colleagues describe the use of risk
models for treatment decision-making in oncology [24].
They explain how deploying a risk model for treatment
decision support is an intervention and thus these models
should be developed, validated and deployed with causality
in mind [24], and that the current acceptance criteria for
risk models by the American Joint Committee on Cancer
allow for the deployment of potentially harmful risk models
because the criteria lack this causal understanding [25,26].

Finally, the European Society for Medical Oncology
released reporting guidance for real-world evidence studies
[5]. The reporting guidance contains points about many
n Oncology: Why, What, How and When, Clinical Oncology, https://
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aspects of real-world studies for instance to assure data
quality and comparability. As many real-world evidence
studies target causal questions, our review is complemen-
tary by providing a methodological introduction to the
fundamentals of causal inference.
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