Mathematics intro

Probabilities, Conditional Independence and Assumption Parlance

Wouter van Amsterdam

2025-07-07

Marginal, Joint and Conditional probabilities

Setup

Probability statements about *random events* A and B

- A: patient dies (A = 1)
- *B*: patient has cancer (B = 1)

Say we have 100 patients, we can tabulate them according to their cancer status and whether they died or not. joint probability table

		Α		
		dies	lives	
В	has cancer	5	5	10
	has no cancer	10	80	90
		15	85	100

Marginal probabilities

- *Marginal* probabilities concern probabilities of *one* random event, regardless of the other random event.
- We read these probabilities from the *margins* of the joint probability table.

statement	interpretation
P(A=1)	<i>marginal</i> probability that event A occurs
P(B=1)	marginal probability that event B occurs

t, regardless of the other random event. ility table.

		Α		
		dies	lives	
В	has cancer	5	5	10
	has no cancer	10	80	90
		15	85	100

Marginal probabilities

- *Marginal* probabilities concern probabilities of *one* random event, regardless of the other random event.
- We read these probabilities from the *margins* of the joint probability table.

statement	interpretation
P(A=1)	marginal probability that event A occurs
P(B=1)	marginal probability that event B occurs

t, regardless of the other random event. ility table.

		Α		
		dies	lives	
В	has cancer			
	has no cancer			
		15	85	100
P(A	= 1) = 15/100			

Marginal probabilities

- *Marginal* probabilities concern probabilities of *one* random event, regardless of the other random event.
- We read these probabilities from the *margins* of the joint probability table.

statement	interpretation
P(A=1)	<i>marginal</i> probability that event A occurs
P(B=1)	marginal probability that event B occurs

t, regardless of the other random event. ility table.

		Α		
		dies	lives	
В	has cancer			10
	has no cancer			90
				100

P(B = 1) = 10/100

Joint Probabilities

- A *joint* probability concerns the probability of two random events *jointly* occurring together.
- These are a based on a single cell in the joint probability table

statement	interpretation
P(A)	marginal probability that event A occurs
P(A=1,B=1)	<i>joint</i> probability of <i>A</i> and <i>B</i>

		Α		
		dies	lives	
В	has cancer	5	5	10
	has no cancer	10	80	90
		15	85	100

Joint Probabilities

- A *joint* probability concerns the probability of two random events *jointly* occurring together.
- These are a based on a single cell in the joint probability table

statement	interpretation
P(A)	marginal probability that event A occurs
P(A=1,B=1)	<i>joint</i> probability of <i>A</i> and <i>B</i>

P(B = 1, A = 1) = 5/100

Conditional probabilities

- *Conditional* probabilities concern the probability of one random event given that another random event has occurred.
- e.g. what is the probability that a patient dies (A = 1) given that they have cancer (B = 1)?
- These are read from the joint probability table by looking in the row or column of the conditioning event.

statement	interpretation
P(A)	marginal probability that event A occurs
P(A, B)	<i>joint</i> probability of <i>A</i> and <i>B</i>
$P(A = 1 \mid B = 1)$	conditional probability of A given B

		Α		
		dies	lives	
В	has cancer	5	5	10
	has no cancer	10	80	90
		15	85	100

- marginal $P(A = 1) = \frac{15}{100}$

Conditional probabilities

- *Conditional* probabilities concern the probability of one random event given that another random event has occurred.
- e.g. what is the probability that a patient dies (A = 1) given that they have cancer (B = 1)?
- These are read from the joint probability table by looking in the row or column of the conditioning event.

statement	interpretation
P(A)	marginal probability that event A occurs
P(A, B)	<i>joint</i> probability of <i>A</i> and <i>B</i>
$P(A = 1 \mid B = 1)$	conditional probability of A given B

		Α		
		dies	lives	
В	has cancer	5	5	10
	has no cancer			

- marginal $P(A = 1) = \frac{15}{100}$

- conditional P(A = 1 | B = 1) = 5/10

Probability rules and identities

Sum rule

A marginal probability can be computed by summing over the joint probabilities of all possible values of the other random event.

statement	interpretation
$P(A) = \sum_{b} P(A, B = b)$	marginal is sum over joint

		Α		
		dies	lives	
В	has cancer	5		
	has no cancer	10		
		15		100

$$P(A = 1) = P(A = 1, B = 1) + P(A = 1, B = 0)$$

= 5/100 + 10/100
= 15/100

Product rule

A *joint* probability can be computed by multiplying the *conditional probability* of one random event given the other random event with the *marginal probability* of the other random event.

statement	interpretation
$P(A) = \sum_{b} P(A, B = b)$	marginal is sum over joint
$P(A \mid B) = P(A \mid B)P(B)$	product rule

With these two rules and basic algebra, we can derive more identities

interpretation statement $P(A) = \sum_{b} P(A, B = b)$ marginal is sum over joint P(A,B) = P(A|B)P(B) product rule

Product rule - different form

a conditional probability can be computed by dividing the joint probability of the two random events by the *marginal probability* of the other random event, since¹

$$x = y * z \implies y =$$

statement	interpretation
$P(A) = \sum_{b} P(A, B = b)$	marginal is sum over joint
P(A,B) = P(A B)P(B)	product rule
$P(A B) = \frac{P(A,B)}{P(B)}$	conditional is joint over marginal (fol
$1. z \neq 0$	

 $=\frac{x}{z}$

lows from product rule)

Law of total probability

statement	interpretation
$P(A) = \sum_{b} P(A, B = b)$	marginal is sum over joi
P(A, B) = P(A B)P(B)	product rule
$P(A \mid B) = \frac{P(A,B)}{P(B)}$	conditional is joint over
$P(A C) = \sum_{b} P(A B = b, C) P(B = b C)$	total probability (conse

• this identity can be proven quite easily using the product rule and the sum rule Section 5.1

int

- r marginal (follows from product rule)
- equence of marginal vs joint and product rule)

Marginal independence and conditional independence

Marginal independence

statement	interpretation
P(A, B) = P(A)P(B)	(marginal) inde

- knowing A has no information on what to expect of B
- If I roll a die, the result of that die (A) has no information on the weather in the Netherlands (B)

pendence of A and B

Conditional independence

- some events may not be independent in general, but they may be independent given some other event C.
- statement:

 $P(A, B \mid C) = P(A \mid C)P(B \mid C)$

- Charlie calls Alice and reads her script C, then she calls Bob and reads him the same
- A week later we ask Alice to repeat the story Charlie told her, she remembered A, a noisy version of C
- We ask Bob the same, he recounts B, a different noisy version of C
- Are A and B independent? No! $P(A, B) \neq P(A)P(B)$
 - If we learn A from Alice, we can get a good guess about B from Bob
- If we knew C, would hearing A give us more information about B?
 - No, because all the shared information between A and B is explained by C, SO:

ABC

- Charlie calls Alice and reads her script C, then she calls Bob and reads him the same
- A week later we ask Alice to repeat the story Charlie told her, she remembered A, a noisy version of C
- We ask Bob the same, he recounts B, a different noisy version of C
- Are A and B independent? No! $P(A, B) \neq P(A)P(B)$
 - If we learn A from Alice, we can get a good guess about B from Bob
- If we knew C, would hearing A give us more information about B?
 - No, because all the shared information between A and B is explained by C, SO:
 - $P(A, B) \neq P(A)P(B)$

ABC

- Charlie calls Alice and reads her script C, then she calls Bob and reads him the same
- A week later we ask Alice to repeat the story Charlie told her, she remembered A, a noisy version of C
- We ask Bob the same, he recounts B, a different noisy version of C
- Are A and B independent? No! $P(A, B) \neq P(A)P(B)$
 - If we learn A from Alice, we can get a good guess about B from Bob
- If we knew C, would hearing A give us more information about B?
 - No, because all the shared information between A and B is explained by C, SO:
 - $P(A, B) \neq P(A)P(B)$
 - $P(A, B \mid C) = P(A \mid C)P(B \mid C)$

ABC

- Charlie calls Alice and reads her script C, then she calls Bob and reads him the same
- A week later we ask Alice to repeat the story Charlie told her, she remembered A, a noisy version of C
- We ask Bob the same, he recounts B, a different noisy version of C
- Are A and B independent? No! $P(A, B) \neq P(A)P(B)$
 - If we learn A from Alice, we can get a good guess about B from Bob
- If we knew C, would hearing A give us more information about B?
 - No, because all the shared information between A and B is explained by C, SO:
 - $P(A, B) \neq P(A)P(B)$
 - $P(A, B \mid C) = P(A \mid C)P(B \mid C)$
- Variables can be marginally dependent but conditionally independent (and vice-versa)

Conditional independence, stated differently

P(A|B,C) = P(A|C)

statement	interpretation
P(A,B) = P(A)P(B)	(marginal) independence of A and B
P(A,B C) = P(A C)P(B C)	conditional independence of A and B given C
P(A B,C) = P(A C)	conditional independence of A and B given C

Conditional independence, stated differently

 $P(A \mid B, C) = P(A \mid C)$

statement	interpretation
P(A, B) = P(A)P(B)	(marginal) independence of A and A
$P(A, B \mid C) = P(A \mid C)P(B \mid C)$	conditional independence of A and
$P(A \mid B, C) = P(A \mid C)$	conditional independence of A and

• both statements of conditional independence can be shown to be equivalent (when the involved conditional probabilities are well-defined) Section 5.2

B

- *B* given *C*
- *B* given *C*

Assumption parlance

Hierarchy of conditions / assumptions

- necessary assumption:
 - A must hold for B to be true
 - having a heart is necessary for having a heart rate
- sufficient assumption:
 - B is always true when A holds
 - Being a square is sufficient to be a rectangle
- strong assumption:
 - requires strong evidence, we'd rather not make these
- weak assumption:
 - requires weak evidence
- strong vs weak assumption are judged on relative terms
 - if assumption A is sufficient for B, B cannot be a stronger assumption than A

Proofs

Law of total (conditional) probability

We are asked to prove:

$$P(A + C) = \sum_{b} P(A + B = b, C)$$
$$P(A + C) = \sum_{b} P(A, B = b + C)$$
$$= \sum_{b} P(A + B = b, C) P(B = b)$$

C) P(B = b + C)

(sum rule)

$| C \rangle$ (product rule)

Conditional independence equivalent statements

We will prove that the conditional independence statement

P(A + B, C) = P(A + C)

is **equivalent** to

 $P(A, B + C) = P(A + C) \cdot P(B + C)$

using basic rules of probability.

Conditional independence equivalent statements V Proof (\Leftarrow direction):

Assume

 $P(A, B + C) = P(A + C) \cdot P(B + C)$

By the product rule,

 $P(A,B+C) = P(A+B,C) \cdot P(B+C)$

Comparing both expressions:

 $P(A + B, C) \cdot P(B + C) = P(A + C) \cdot P(B + C)$

Divide both sides by $P(B \mid C) > 0$, we get:

P(A + B, C) = P(A + C)

Conditional independence equivalent statements V Proof (\Rightarrow direction):

Assume

P(A + B, C) = P(A + C)

Again by the product rule:

 $P(A,B+C) = P(A+B,C) \cdot P(B+C)$

Substitute P(A + C) for P(A + B, C), we get:

 $P(A, B + C) = P(A + C) \cdot P(B + C)$

Conditional independence equivalent statements Conclusion:

 $P(A + B, C) = P(A + C) \iff P(A, B + C) = P(A + C) \cdot P(B + C)$

as required.