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Marginal, Joint and Conditional
probabilities



Setup
Probability statements about random events A and B

A: patient dies (A = 1)

B: patient has cancer (B = 1)

Say we have 100 patients, we can tabulate them according to their cancer status and whether they died or not.

joint probability table

A

dies lives

B has cancer 5 5 10

has no cancer 10 80 90

15 85 100



Marginal probabilities
Marginal probabilities concern probabilities of one random event, regardless of the other random event.

We read these probabilities from the margins of the joint probability table.

statement interpretation

P(A = 1) marginal probability that event A occurs

P(B = 1) marginal probability that event B occurs

A

dies lives

B has cancer 5 5 10

has no cancer 10 80 90

15 85 100
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statement interpretation

P(A = 1) marginal probability that event A occurs

P(B = 1) marginal probability that event B occurs

A

dies lives

B has cancer
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P(A = 1) = 15/100



Marginal probabilities
Marginal probabilities concern probabilities of one random event, regardless of the other random event.

We read these probabilities from the margins of the joint probability table.

statement interpretation

P(A = 1) marginal probability that event A occurs

P(B = 1) marginal probability that event B occurs

A

dies lives

B has cancer 10

has no cancer 90

100

P(B = 1) = 10/100



Joint Probabilities
A joint probability concerns the probability of two random events jointly occurring together.

These are a based on a single cell in the joint probability table

statement interpretation

P(A) marginal probability that event A occurs

P(A = 1, B = 1) joint probability of A and B

A

dies lives

B has cancer 5 5 10

has no cancer 10 80 90

15 85 100



Joint Probabilities
A joint probability concerns the probability of two random events jointly occurring together.

These are a based on a single cell in the joint probability table

statement interpretation

P(A) marginal probability that event A occurs

P(A = 1, B = 1) joint probability of A and B

A

dies lives

B has cancer 5

has no cancer

100

P(B = 1, A = 1) = 5/100



Conditional probabilities
Conditional probabilities concern the probability of one random event given that another random event has
occurred.

e.g. what is the probability that a patient dies (A = 1) given that they have cancer (B = 1)?

These are read from the joint probability table by looking in the row or column of the conditioning event.

statement interpretation

P(A) marginal probability that event A occurs

P(A, B) joint probability of A and B

P(A = 1 |B = 1) conditional probability of A given B

A

dies lives

B has cancer 5 5 10

has no cancer 10 80 90

15 85 100

- marginal P(A = 1) = 15/100



Conditional probabilities
Conditional probabilities concern the probability of one random event given that another random event has
occurred.

e.g. what is the probability that a patient dies (A = 1) given that they have cancer (B = 1)?

These are read from the joint probability table by looking in the row or column of the conditioning event.

statement interpretation

P(A) marginal probability that event A occurs

P(A, B) joint probability of A and B

P(A = 1 |B = 1) conditional probability of A given B

A

dies lives

B has cancer 5 5 10

has no cancer

- marginal P(A = 1) = 15/100
- conditional P(A = 1 |B = 1) = 5/10



Probability rules and identities



Sum rule
A marginal probability can be computed by summing over the joint probabilities of all possible values of the other
random event.

statement interpretation

P(A) = ∑bP(A, B = b) marginal is sum over joint

A

dies lives

B has cancer 5

has no cancer 10

15 100

P(A = 1) = P(A = 1, B = 1) + P(A = 1, B = 0)
= 5/100 + 10/100
= 15/100



Product rule
A joint probability can be computed by multiplying the conditional probability of one random event given the other
random event with the marginal probability of the other random event.

statement interpretation

P(A) = ∑bP(A, B = b) marginal is sum over joint

P(A, B) = P(A |B)P(B) product rule

A

dies lives

B has cancer 5 10

has no cancer

100

P(A = 1, B = 1) = P(A = 1 |B = 1)P(B = 1)
= 5/10 ∗ 10/100
= 5/100



With these two rules and basic algebra, we can derive more identities

statement interpretation

marginal is sum over joint

product rule

𝑃 (𝐴) = 𝑃 (𝐴, 𝐵 = 𝑏)∑ 𝑏

𝑃 (𝐴, 𝐵) = 𝑃 (𝐴|𝐵)𝑃 (𝐵)



Product rule - different form
a conditional probability can be computed by dividing the joint probability of the two random events by the
marginal probability of the other random event, since1

statement interpretation

marginal is sum over joint

product rule

conditional is joint over marginal (follows from product rule)
1. 

𝑥 = 𝑦 ∗ 𝑧 ⟹ 𝑦 =
𝑥

𝑧

𝑃 (𝐴) = 𝑃 (𝐴, 𝐵 = 𝑏)∑ 𝑏

𝑃 (𝐴, 𝐵) = 𝑃 (𝐴|𝐵)𝑃 (𝐵)

𝑃 (𝐴|𝐵) = 𝑃(𝐴,𝐵)
𝑃(𝐵)

𝑧 ≠ 0



Law of total probability
statement interpretation

P(A) = ∑bP(A, B = b) marginal is sum over joint

P(A, B) = P(A |B)P(B) product rule

P(A |B) =
P (A ,B )
P (B )

conditional is joint over marginal (follows from product rule)

P(A |C) = ∑bP(A |B = b, C)P(B = b |C) total probability (consequence of marginal vs joint and product rule)

this identity can be proven quite easily using the product rule and the sum rule Section 5.1



Marginal independence and conditional
independence



Marginal independence
statement interpretation

P(A, B) = P(A)P(B) (marginal) independence of A and B

knowing A has no information on what to expect of B

If I roll a die, the result of that die (A) has no information on the weather in the Netherlands (B)



Conditional independence
some events may not be independent in general, but they may be independent given some other event C.

statement:

P(A, B |C) = P(A |C)P(B |C)



Conditional Independence in an example
Charlie calls Alice and reads her script C, then she calls Bob and reads him
the same

A week later we ask Alice to repeat the story Charlie told her, she
remembered A, a noisy version of C

We ask Bob the same, he recounts B, a different noisy version of C

Are A and B independent? No! P(A, B) ≠ P(A)P(B)

If we learn A from Alice, we can get a good guess about B from Bob

If we knew C, would hearing A give us more information about B?

No, because all the shared information between A and B is explained by C,
so:

ABC
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Conditional Independence in an example
Charlie calls Alice and reads her script C, then she calls Bob and reads him
the same

A week later we ask Alice to repeat the story Charlie told her, she
remembered A, a noisy version of C

We ask Bob the same, he recounts B, a different noisy version of C

Are A and B independent? No! P(A, B) ≠ P(A)P(B)

If we learn A from Alice, we can get a good guess about B from Bob

If we knew C, would hearing A give us more information about B?

No, because all the shared information between A and B is explained by C,
so:

P(A, B) ≠ P(A)P(B)

P(A, B |C) = P(A |C)P(B |C)

Variables can be marginally dependent but conditionally independent (and
vice-versa)

ABC



Conditional independence, stated differently

statement interpretation

(marginal) independence of  and 

conditional independence of  and  given 

conditional independence of  and  given 

𝑃 (𝐴|𝐵,𝐶) = 𝑃 (𝐴|𝐶)

𝑃 (𝐴, 𝐵) = 𝑃 (𝐴)𝑃 (𝐵) 𝐴 𝐵

𝑃 (𝐴, 𝐵|𝐶) = 𝑃 (𝐴|𝐶)𝑃 (𝐵|𝐶) 𝐴 𝐵 𝐶

𝑃 (𝐴|𝐵,𝐶) = 𝑃 (𝐴|𝐶) 𝐴 𝐵 𝐶



Conditional independence, stated differently
P(A |B, C) = P(A |C)

statement interpretation

P(A, B) = P(A)P(B) (marginal) independence of A and B

P(A, B |C) = P(A |C)P(B |C) conditional independence of A and B given C

P(A |B, C) = P(A |C) conditional independence of A and B given C

both statements of conditional independence can be shown to be equivalent (when the involved conditional
probabilities are well-defined) Section 5.2



Assumption parlance



Hierarchy of conditions / assumptions
necessary assumption:

A must hold for B to be true

having a heart is necessary for having a heart rate

sufficient assumption:

B is always true when A holds

Being a square is sufficient to be a rectangle

strong assumption:

requires strong evidence, we’d rather not make these

weak assumption:

requires weak evidence

strong vs weak assumption are judged on relative terms

if assumption A is sufficient for B, B cannot be a stronger assumption than A



Proofs



Law of total (conditional) probability
We are asked to prove:

𝑃 (𝐴 ∣ 𝐶) = 𝑃 (𝐴 ∣ 𝐵 = 𝑏,𝐶) 𝑃 (𝐵 = 𝑏 ∣ 𝐶)∑
𝑏

𝑃 (𝐴 ∣ 𝐶) = 𝑃 (𝐴, 𝐵 = 𝑏 ∣ 𝐶)∑
𝑏

= 𝑃 (𝐴 ∣ 𝐵 = 𝑏,𝐶) 𝑃 (𝐵 = 𝑏 ∣ 𝐶)∑
𝑏

(sum rule)

(product rule)



Conditional independence equivalent statements
We will prove that the conditional independence statement

is equivalent to

using basic rules of probability.

𝑃 (𝐴 ∣ 𝐵,𝐶) = 𝑃 (𝐴 ∣ 𝐶)

𝑃 (𝐴, 𝐵 ∣ 𝐶) = 𝑃 (𝐴 ∣ 𝐶) ⋅ 𝑃 (𝐵 ∣ 𝐶)



Conditional independence equivalent statements
✅ Proof (⇐ direction):
Assume

By the product rule,

Comparing both expressions:

Divide both sides by , we get:

𝑃 (𝐴, 𝐵 ∣ 𝐶) = 𝑃 (𝐴 ∣ 𝐶) ⋅ 𝑃 (𝐵 ∣ 𝐶)

𝑃 (𝐴, 𝐵 ∣ 𝐶) = 𝑃 (𝐴 ∣ 𝐵,𝐶) ⋅ 𝑃 (𝐵 ∣ 𝐶)

𝑃 (𝐴 ∣ 𝐵,𝐶) ⋅ 𝑃 (𝐵 ∣ 𝐶) = 𝑃 (𝐴 ∣ 𝐶) ⋅ 𝑃 (𝐵 ∣ 𝐶)

𝑃 (𝐵 ∣ 𝐶) > 0

𝑃 (𝐴 ∣ 𝐵,𝐶) = 𝑃 (𝐴 ∣ 𝐶)



Conditional independence equivalent statements
✅ Proof (⇒ direction):
Assume

Again by the product rule:

Substitute  for , we get:

𝑃 (𝐴 ∣ 𝐵,𝐶) = 𝑃 (𝐴 ∣ 𝐶)

𝑃 (𝐴, 𝐵 ∣ 𝐶) = 𝑃 (𝐴 ∣ 𝐵,𝐶) ⋅ 𝑃 (𝐵 ∣ 𝐶)

𝑃 (𝐴 ∣ 𝐶) 𝑃 (𝐴 ∣ 𝐵,𝐶)

𝑃 (𝐴, 𝐵 ∣ 𝐶) = 𝑃 (𝐴 ∣ 𝐶) ⋅ 𝑃 (𝐵 ∣ 𝐶)



Conditional independence equivalent statements
✅ Conclusion:

as required.

𝑃 (𝐴 ∣ 𝐵,𝐶) = 𝑃 (𝐴 ∣ 𝐶) ⟺ 𝑃 (𝐴, 𝐵 ∣ 𝐶) = 𝑃 (𝐴 ∣ 𝐶) ⋅ 𝑃 (𝐵 ∣ 𝐶)




