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Topics of lecture
• A taxonomy of estimands on time-varying treatments (incl. 

intention-to-treat and per-protocol effects)

• Why traditional methods fail for inference about time-varying 
treatments in the presence of treatment-covariate feedback

• G-methods for time-varying treatments

• Typical estimands in mediation analysis

• Why traditional approach to mediation analysis fail

• G-methods overcome limitations of traditional approaches

• Instrumental variable analysis with non-exchangeable 
treatment groups



Statin-cancer example revisited
Previous studies implicitly compared long-term statin users 
versus non-users – don’t necessarily answer questions like …
• What would be my 10-year cancer risk if – possibly contrary to 

fact – I would start statin treatment now? And what if I 
wouldn’t?

• What would be my 10-year cancer risk if – possibly contrary to 
fact – I would start statin treatment now and adhered to it? 
And what if I wouldn’t start now or in the future?

Intention-to-treat versus per-protocol effect



Inference about time-varying treatments
If treatment/exposure is time-varying, there are many possible
causal contrasts …



Single versus multiple-point interventions
Single-point (baseline) intervention
• Eg: assign/initiate versus withhold drug treatment at baseline 
• Individuals are allowed to deviate (intention-to-treat)
• Randomisation at baseline only

Multiple-point (joint) intervention
• Eg: sustained/daily/weekly/monthly drug use versus 

continuous non-use (per-protocol)
• Randomisation at multiple points



Static versus dynamic interventions
Static treatment rule/regime/protocol/…
• … assigns the same treatment option to everyone
• Eg: assign versus withhold treatment regime at baseline 

(intention-to-treat)
• Eg: always treat versus never treat (per-protocol)

Dynamic (individualised) treatment rule
• … assigns treatment based on the then-available information
• Eg: choose dose depending on baseline covariates
• Eg: start when blood marker first drops below threshold
• Eg: stop when toxicity occurs
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Which of the following are examples of a 
single-point intervention? 

A. Initiate an exercise program consisting of 30 minutes per day

B. Initiate a program of daily exercise and adhere to it for at 
least 3 months

C. Initiate 10 mg/day atorvastatin and continue for five years or 
until the development of a contraindication 

D. Issue a single prescription for daily atorvastatin use within a 
given period of time



Treatment-covariate feedback
Adjust for L1 if we want to know the effect of always- versus 
never treatment?



Treatment-covariate feedback
Adjust for Z1 (HIV viral load just prior to second round of 
treatment) if we want to know the effect of always- versus never 
anti-retroviral treatment?



Treatment-covariate feedback

• Traditional methods (multivariable regression modelling) are 
not suited to deal with time-varying confounding when it is 
affected by past treatment (treatment-covariate feedback)

• Methods that can handle treatment-covariate feedback and 
adjusting for time-varying confounding:
- Inverse probability weighting (IPW)
- G-computation
- G-estimation



IPW for sustained treatments
• Let Y1

a0,Y2
a0,a1 be counterfactual Y1,Y2 if all A0,A1 were a0,a1

• Target: Pr(Y1
a0 = Y2

a0,a1 = 0) – survival probability if …?
• Same assumptions but slightly different form – eg,

sequential conditional exchangeability:
Y1

a0,Y2
a0,a1 independent of 

- independent of A0 given L0

- independent of A1 given L0, L1, A0=a0, Y1=0
• Idea: patients who do not deviate from protocol compensate 

for “similar” patients who do
• Weights are time-varying



Clone-censor-weight approach
• ‘Clone’ each patient once for each treatment regimen of 

interest

• ‘Censor’ each clone when their person-time is no longer 
consistent with the corresponding treatment regimen

• ‘Weight’ the remaining person-time by the inverse probability 
of being censored









The clone-censor-weight approach is especially well suited to 
prevent immortal time bias (eg, due to misclassification as per 
figure B)!



Concluding remarks
• IPW/clone-censor-weighting (and other g-methods), but not 

traditional methods, are suited to handle time-varying 
confounding affected by past treatment (feedback)

• As with IPW for time-fixed confounding, default standard error 
estimators of many software packages are not appropriate for 
weighted regressions, because the weights are falsely assumed 
to reflect actual (independent!) observation frequencies

• IPW can (and sometimes need) be combined with marginal 
structural modelling (Robins et al., Epidemiology, 2000;11:550-
560)



Mediation
What part of the effect “goes via” or is “mediated by” a third 
variable?



Examples
• What part of the effect of cognitive behavioural therapy (CBT) 

on depression symptoms is mediated by antidepressant use?
• To what extent is the effect of genetic variants on incident 

lung cancer mediated by smoking behaviour?
• To what extent is the effect of maternal smoking on infant 

mortality mediated by birth weight?



Traditional approach
• Exposure: CBT (A); outcome: depression symptoms (Y); mediator: 

antidepressant use (M)?
• Regress Y on A and M to estimate part of effect ‘not through’ M
• But what happens if we condition on M?



Why the traditional approach fails
• Assumes no unmeasured confounding between M and Y

(not guaranteed in trials where A is randomly assigned)
Else: collider-stratification (bias)!



Why the traditional approach fails
• Assumes common causes of M and Y (eg, C) do not also 

mediate the effect of A on Y, other than through M
Else: adjusting for C would ‘wash away’ part of indirect effect



Why the traditional approach fails
• Assumes no interaction between A and M
• And more … (depending what it is we want to know exactly)



Mediation analysis and causal inference 
on time-varying treatments 

• “The study of causal mediation can be seen as a special case 
of causal inference with time-varying treatments”

• “Rather than having a single treatment that takes different 
values over time, in mediation analysis we have two different 
variables—the treatment of interest and the mediator—at 
different times”

Hernán and Robins, 2020, Causal Inference: What if



Modern counterfactual outcomes 
perspective on mediation analysis 
Let’s clarify what we want to know, the estimand! The 
counterfactual outcomes framework gives us a language to do 
this …

Notation:
• Treatment (e.g., CBT): A
• Mediator (e.g., antidepressant use): M
• Mediator had treatment A been a: Ma

• Outcome (e.g., depression symptoms): Y
• Outcome had A and M been a and m: Ya,m

• Outcome had A been a: Ya,Ma



Effect decomposition and estimand
Mediation analyses presume some sort of decomposition of the 
total effect into mediated (or indirect) and direct effects …

Total effect = E[Y1,M1
– Y0,M0

]
= E[Y1,M1

– Y1,M0
+ Y1,M0

– Y0,M0
]

= E[Y1,M1
– Y1,M0

] + E[Y1,M0
– Y0,M0

]
= natural indirect effect + natural direct effect



Effect decomposition and estimand
Mediation analyses presume some sort of decomposition of the 
total effect into mediated (or indirect) and direct effects …

Total effect = E[Y1,M1
– Y0,M0

]
= E[Y1,m – Y1,m] + …
= controlled direct effect (m) + …



Controlled versus natural direct effects
• Different interpretations

▪ NDE: ‘how much of the effect “flows” through the mediator 
path?’

▪ CDE: ‘how much of the effect would be removed by fixing the 
mediator to a constant?’

• For policy, CDE typically most relevant (directly)
• NDE and CDE can differ substantially – e.g., when treatment 

does not affect M yet (additively) interacts with M:
▪ NDE = total effect
▪ CDE(m) may differ from total effect for some m

• NDE and CDE are equal under strong assumptions



Cross-world assumptions
• Traditional approach (assuming not measured covariates) can 

be viewed as starting with two models:
▪ One for the mediator:

Ma = 𝛽0 + 𝛽1 a + 𝜖, with mean-zero 𝜖 independent of A
▪ One for the outcome:

Ya,m = 𝛼0 + 𝛼1 a + 𝛼2 m + 𝜀, with mean-zero 𝜀 independent of A,𝜖
• Under these models, CDE and NDE coincide
• But they imply a cross-world independence:

Y1,m and M0 are independent!
• These counterfactuals don’t live in the same world: one lives 

in a world where A is set to 1 and the other where it is set to 
0!



Identification of controlled direct effects
• For identification of CDE, we don’t need cross-world 

assumptions
• Typical identification strategies that overcome limitations of 

traditional approach: g-computation, IPW
• Idea of IPW:

IPW



Identification of controlled direct effects
Suppose that, in addition to consistency and positivity, the following 
exchangeability conditions are met for binary A,M:

• Ya,m independent of A
(no unmeasured exposure-outcome confounding)

• Ya,m independent of M given C and A=a
(no unmeasured mediator-outcome confounding given C and A)

Then, E[Ya,m] = Epseudopopulation[Y| A=a, M=m] if the pseudopopulation 
is obtained by weighting everyone with W, defined as 
1 / Pr(M = 1 | C,A) if M = 1 and as W = 1 / Pr(M = 0 | C,A) if M = 0.



Identification of natural direct effects
• Point (i.e., exact) identification problematic as identification results 

rely on cross-world assumptions!

• But partial identification (without cross-world assumptions) may 
still be informative 
(Robins, J.M. and Richardson, T.S., 2010. Alternative graphical causal models and the 
identification of direct effects. Causality and psychopathology: Finding the 
determinants of disorders and their cures, 84, pp.103-158)

• Relevance questionable/debatable



Instrumental variable analysis
… when we have non–exchangeable treatment groups (i.e., 
uncontrolled confounding)



Standard identifiability assumptions
For inference about the effect of A on Y from observational data, 
we typically assume
• Conditional exchangeability: A and Ya are independent given L
• Consistency: Ya = Y if A = a
• Positivity: Pr(A = a | L) > 0

What if we’re not comfortable that we’ve found such L? It may 
then be worth considering instrumental variable analysis, which 
exchanges our standard assumptions for a different set of 
identifiability assumptions



Motivating example: 
RCT with non-compliance
Inference about effect of received treated
• Intention-to-treat analysis (misclassification due to non-

compliance)
• Per-protocol analysis (≠ per-protocol effect; unmeasured 

confounding)
• As-treated analysis (≠ treatment effect; unmeasured 

confounding)



Notation
• Allocated treatment: Z
• Received treatment: A
• Received treatment had Z been z: Az

• Outcome: Y
• Outcome had Z and A been z and a: Yz,a

• Outcome had A been a: YZ,a



Four subgroups
Based on A1 and A0, we can distinguish between four subgroups



Instrumental variables
Z is an instrumental variable (IV) for treatment A and outcome Y if
• Cov(Z,A) ≠ 0 (relevance)
• Y(z,a) constant across levels of z (no direct effect of IV on Y; 

exclusion restriction)
• IV exchangeability: e.g., no causes shared by Z and Y

or by Z and A



Fourth assumption
Monotonicity: there are no defiers



IV analysis under monotonicity
Suppose instrument Z and treatment A are binary 
and, in addition to consistency and positivity, the following 
assumptions hold:
• Relevance
• Exclusion restriction
• Exchangeability: Yz,Az

and Az are both independent of Z, for all z
• Monotonicity: there are no defiers

Then, the mean treatment effect among compliers, E[YZ,1 – YZ,0| 
Compliers], equals Cov(Y,Z) / Cov(A,Z) or, equivalently,

E[Y | Z = 1] – E[Y | Z = 0]

E[A | Z = 1] – E[A | Z = 0] 



Checking assumptions
• Relevance can be empirically tested 
• Exclusion criterion cannot generally be empirically tested
• Exchangeability cannot generally be empirically tested

• But balance can be tested with respect to measured variables
• Monotonicity cannot generally be empirically tested
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