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Recap: causal questions
questions of association are of the kind:

what is the probability of  (potentially: after observing )?, e.g.:𝑌 𝑋

what is the chance of rain tomorrow given that is was dry today?

what is the chance a patient with lung cancer lives more than 10% after diagnosis?

these hands behind your back and passively observe the world-questions

causal questions are of the kind:

how would  change when we intervene on ?, e.g.:𝑌 𝑇

if we would send all pregant women to the hospital for delivery, what would happen with neonatal
outcomes?

if we start a marketing campain, by how much would our revenue increase?

these tell us what would happen if we changed something



What is prediction?



Examples of prediction tasks
observe an , want to know what to expect for 𝑋 𝑌

1. X = patient caughs, Y = patient has lung cancer

2. X = ECG, Y = patient has heart attack

3. X = CT-scan, Y = patient dies within 2 years



Prediction: typical approach
1. define population, find a cohort

2. measure  at prediction baseline𝑋

3. measure 𝑌

a. cross-sectional (e.g. diagnosis)

b. longitudinal follow-up (e.g. survival)

4. use a statistical learning technique (e.g. regression, machine learning)

fit model  to observed  with a criterion / loss function𝑓 { , }𝑥𝑖 𝑦𝑖

5. evaluate prediction performance with e.g. discrimination, calibration, 𝑅 2



Prediction: typical estimand
Let  depend on parameter , prediction typically aims for:𝑓 𝜃

(𝑥) → 𝐸[𝑌 |𝑋 = 𝑥]𝑓𝜃

when  is binary:𝑌

probability of a heart attack in 10 years, given age and cholesterol

probability of lung cancer, given symptoms and CT-scan

typical evaluation metrics:

discrimination: sensitivity, specificity, AUC

calibration



Causal inference: typical approach
1. define target population and targeted treatment comparison

2. run randomized controlled trial, randomizing treatment allocation (when possible)

3. measure patient outcomes

4. estimate parameter that summarizes average treatment effect (ATE)

typical estimand:

𝐸[𝑌 |do(𝑇 = 1)] − 𝐸[𝑌 |do(𝑇 = 0)]



Causal inference versus prediction
prediction causal inference

typical estimand 𝐸[𝑌 |𝑋]
typical study: longitudinal cohort

typical interpretation:  predicts 𝑋 𝑌

primary use: know what  to expect when observing a
new  assuming no change in joint distribution

𝑌
𝑋

typical estimand 𝐸[𝑌 |do(𝑇 = 1)] − 𝐸[𝑌 |do(𝑇 = 0)]
typical study: RCT (or observational causal inference
study)

typical interpretation: causal effect of  on 𝑇 𝑌

primary use: know what change in  to expect when
changing the treatment policy

𝑌



What do we mean with treatment policy?
A treatment policy  is a procedure for determining the treatment

Assuming  is binary,  can be:

𝜋

𝑇 𝜋

 (a 1/1 RCT)𝜋 = 0.5
give blood pressure pill to patients with hypertension:

𝜋(𝑏𝑙𝑜𝑜𝑑𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒) = { 1,
0,

𝑏𝑙𝑜𝑜𝑑𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 > 140𝑚𝑚𝐻𝑔
otherwise

give statins to patients with more than 10% predicted risk of heart attack:

𝜋(𝑋) = { 1,
0,

𝑓(𝑋) > 0.1
otherwise

the propensity score can be seen as a (non-deterministic) treatment policy



Where can prediction and causality meet?
1. prediction has a causal interpretation

2. prediction does not have a causal interpretation:

a. but is used for a causal task (e.g. treatment decision making)

b. but predictions can be improved with causal thinking in terms of e.g.:

interpretability, robustness, ‘spurious correlations’, generalization, fairness, selection bias



2a. Prediction model used for a causal task





Using prediction models for decision making is often thought of as a
good idea
For example:

1. give chemotherapy to cancer patients with high predicted risk of recurrence

2. give statins to patients with a high risk of a heart attack

“Their primary use is to support clinical decision making, such as … initiate treatment or lifestyle changes.”

TRIPOD+AI on prediction models ( )Collins et al. 2024



This may lead to bad situations when:

1. ignoring the treatments patients may have had during training / validation of prediction model

2. only considering measures of predictive accuracy as sufficient evidence for safe deployment



When accurate prediction models yield
harmful self-fulfilling prophecies





Building models for decision support without regards for the historic
treatment policy is a bad idea





The question is not “is my model accurate before / after deployment”,

but did deploying the model improve patient outcomes?



Treatment-naive prediction models

𝐸[𝑌 |𝑋] = 𝐸[ [𝑌 |𝑋, 𝑡]]𝐸 𝑡 ∼ (𝑋)𝜋0



Is this obvious?



Prediction modeling is very popular in medical research



Recommended validation practices and reporting guidelines do not
protect against harm
because they do not evaluate the policy change



Bigger data does not protect against harmful prediction models



More flexible models do not protect against harmful prediction
models





What to do?



What to do?

1. Evaluate policy change (cluster randomized controlled trial)

2. Build models that are likely to have value for decision making



How to evaluate the effect of a new
treatment policy?



Deploying a model is an intervention that changes the way treatment
decisions are made



How do we learn about the effect of an intervention?
With causal inference!

for using a decision support model, the unit of intervention is usually the doctor

randomly assign doctors to have access to the model or not

measure differences in treatment decisions and patient outcomes

this called a cluster RCT

if using model improves outcomes, use that one

“As one possibility, suppose that a trial is performed in which clinicians are randomized either to have or not to have access to such a decision aid in making
decisions about where to treat patients who present with pneumonia.”

Using cluster RCTs to evaluated models for decision making is not a new idea ( )Cooper et al. 1997

was the model predicting anything sensible?

What we don’t learn



What if we cannot do this (cluster randomized) trial?
Off-policy evaluation
1. have historic RCT data, want to evaluate new policy 𝜋1

target distribution 𝑝(𝑡|𝑥) = (𝑥)𝜋1

observed distribution 𝑞(𝑡|𝑥) = 0.5
note: when  is deterministic (e.g. give the treatment when ), we get the following:(𝑥)𝜋1 𝑓(𝑥) > 0.1
a. when randomized treatment is concordant with , keep the patient (weight = 1), otherwise, remove from

the data (weight = 0)
𝜋1

b. calculate average outcomes in the kept patients

this way, multiple alternative policies may be evaluated

2. have historic observational data, want to evaluate new policy :𝜋1

target distribution 𝑝(𝑡|𝑥) = (𝑥)𝜋1

observed distribution 𝑞(𝑡|𝑥) = (𝑥)𝜋0

we need to estimate  (i.e. the propensity score), this procedure relies on the standard causal inference
assumptions (no confounding, positivity)

𝑞

use importance sampling to estimate the expected value of  under  from the observed data𝑌 𝜋1



How to build prediction models for decision support?



1. Prediction has a causal interpretation



What can we mean with predictions having a causal interpretation?
Let  be a prediction model for outcome  using features 𝑓 : 𝕏 → 𝕐 𝑌 𝑋

1.  is an ancestor of  ( )𝑋 𝑌 𝑋 = { , , }𝑧1 𝑧2 𝑧3

2.  is a direct cause of  ( )𝑋 𝑌 𝑋 = { , }𝑧1 𝑧2

3.  describes the causal effect of  on  (
), i.e.:

𝑓 : 𝕏 → 𝕐 𝑋 𝑌
𝑋 = { }𝑧1

𝑓(𝑥) = 𝐸[𝑌 |do(𝑋 = 𝑥)]

4.  describes the causal effect of  on
 conditional on  ( :

𝑓 : 𝕋 × 𝕏 → 𝕐 𝑇
𝑌 𝑋 𝑇 = { },𝑋 = { , ,𝑤}𝑧1 𝑧2 𝑧3

𝑓(𝑡, 𝑥) = 𝐸[𝑌 |do(𝑇 = 𝑡),𝑋 = 𝑥]



interpretation 3. all covariates are causal
Let  be a prediction model for outcome  using features 𝑓 : 𝕏 → 𝕐 𝑌 𝑋

𝑓(𝑥) = 𝐸[𝑌 |do(𝑋 = 𝑥)]

this is almost never true (i.e. back-door rule holds for all variables)

too often this is assumed / interpreted this way (table 2 fallacy in health care literature)



Example of table 2 fallacy when mis-using Qrisk
: a risk prediction model for cardiovascular events in the coming 10-years. Widely used in the United

Kingdom for deciding which patients should get statins
Qrisk3

https://www.qrisk.org/


Qrisk3 - risks:
can go wrong when:

e.g. fill in current length and weight

reduce weight by 5 kgs

interpret difference as ‘effect of weight loss’

check or un-check blood pressure medication

observe that with blood pressure medication, risk is higher



What else could go wrong?
Qrisk3 states it is validated, but validated for what?

Qrisk3 is validated for non-use!



interpretation 4. some covariates are causal
or: prediction-under-intervention

𝑓(𝑡, 𝑥) = 𝐸[𝑌 |do(𝑇 = 𝑡),𝑋 = 𝑥]

interpretation: what is the expected value of  if we were to assign treatment  by intervention, given that we know
 in this patient

𝑌 𝑡
𝑋 = 𝑥



using treatment naive prediction models for decision
support

prediction-under-intervention



Estimand for prediction-under-intervention models
What is the estimand?

prediction: 𝐸[𝑌 |𝑋]
average treatment effect: 𝐸[𝑌 |do(𝑇 = 1)] − 𝐸[𝑌 |do(𝑇 = 0)]
conditional average treatment effect: 𝐸[𝑌 |do(𝑇 = 1),𝑋] − 𝐸[𝑌 |do(𝑇 = 0),𝑋]
prediction-under-intervention: 𝐸[𝑌 |do(𝑇 = 𝑡),𝑋]

note:

from prediction-under-intervention models, the CATE can be derived

in these models and the CATE:  has a causal interpretation,  does not!𝑇 𝑋

i.e.   does not cause the effect of treatment to be different𝑋



Developing prediction-under-intervention models
requires causal inference assumptions or RCTs

single RCTs often not big enough, or did not measure the right s𝑋

when  is not a sufficient adjustment set, but  is, can use e.g. propensity score methods𝑋 𝑋 + 𝐿
assumption of no unobserved confounding often hard to justify in observational data

but there’s more between heaven (RCT) and earth (confounder adjustment)

proxy-variable methods (e.g. ; )

constant relative treatment effect assumption (e.g. ; ;
)

diff-in-diff

instrumental variable analysis ( ; ; )

front-door analysis

Miao, Geng, and Tchetgen Tchetgen 2018 van Amsterdam et al. 2022

Alaa et al. 2021 van Amsterdam and Ranganath 2023
Candido dos Reis et al. 2017

Wald 1940 Puli and Ranganath 2021 Hartford et al. 2017

not covered now: formulating correct estimands (and getting the right data) becomes much more complicated
when considering dynamic treatment decision processes (e.g. blood pressure control with multiple follow-up
visits)



Evaluation of prediction-under-intervention models
prediction accuracy can be tested in RCTs, or in observational data with specialized methods accounting for
confounding (e.g. )Keogh and van Geloven 2024

in confounded observational data, typical metrics (e.g. AUC or calibration) are not sufficient as we want to
predict well in data from other distribution than observed data (i.e. other treatment decisions)

a new policy can be evaluated in historic RCTs (e.g. )Karmali et al. 2018

ultimate test is cluster RCT

if not perfect, likely a better recipe than treatment-naive models



2b. improving non-causal prediction models
with causality

interpretability

robustness / ‘spurious correlations’ / generalization

fairness

selection bias



Interpretability
end-users (e.g. doctors) often want to understand why a prediction model returns a certain prediction

this has two possible interpretations:

a. explain the model (i.e. the computations)

b. explain the world (i.e. why is this patient at high risk of a certain outcome)

b. often has a causal connotation, though achieving this is may be unfeasible as you need causal assumptions on
all covariates (rember table 2 fallacy)



Robustness / spurious correlations / generalization
prediction models are developed in some data, but are intended to be used elsewhere (in location, time, other)

in causal language, shifts in distributions can be denoted as interventions on specific nodes

prediction models that include (direct) causes may be more robust to changes as the chain between  and  is
shorter

𝑋 𝑌

some machine learning algorithms like deep learning are very good at detecting ‘background’ signals, e.g.:

detect the scanner type from a CT-scanner

if hospital A has scanner type 1 and hospital B has scanner type 2

and the outcome rates differ between the hospitals, models may (mis)use the scanner type to predict the
outcome

what will the model predict in hospital C? or when A or B buy a scanner of different type?

may be preventable with causality



Fairness
in the historic distribution, outcomes may be affected by unequal treatment of certain demographic groups

instead of perpetuating inequities, we may want to design models that diminish them

this means intervening in the distribution (= a causal task)

causality has a strong vocabulary for formalizing fairness

actually achieving fairness is highly non-trivial, not in the least part due to unclear definitions

chosing to not include sensitive attributes in a prediction model is often not gauranteed to improve fairness



Selection bias
have samples from some selected subpopulation

university hospital

older men

want to generalize to another subpopulation

general practitioner

younger women

use DAGs to express the difference between source and target population

calculate e.g. expected performance on target population with techniques like importance sampling



Wrap-up
predictions can have causal interpretations

prediction-under-intervention: causal with respect to treatment (not covariates)

mis-use of non-causal models for causal tasks (e.g. prediction model for treatment decisions) is perilous

always think about the policy change and its effect on outcomes

evaluate policy changes with cluster RCTs, or historic RCTs and importance sampling

causal thinking may improve other aspects of non-causal prediction models such as robustness, fairness,
generalization



Proof of importance sampling unbiasedness
assuming  is discrete, otherwise replace sums with integrals for continuous 

want to compute the expected value of  over distribution , but we have samples from another distribution

this assumes  whenever  for the ratio  to be defined

𝑥 𝑥

𝑔(𝑥) 𝑝
𝑥 ∼ 𝑞

[ 𝑔(𝑥)] = 𝑞(𝑥)( 𝑔(𝑥)) = 𝑝(𝑥)𝑔(𝑥) = [𝑔(𝑥)]𝐸𝑥∼𝑞
𝑝(𝑥)
𝑞(𝑥) ∑

𝑥

𝑝(𝑥)
𝑞(𝑥) ∑

𝑥

𝐸𝑥∼𝑝

𝑞(𝑥) > 0 𝑝(𝑥) > 0 𝑝/𝑞
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