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Why are DAGs helpful?

DAGs allow us to “read off” all the paths by which two
variables are marginally and conditionally (in)dependent

• Formalizes the idea that two variables can be
statistically dependent in a particular way without one
being a cause of the other

• d-seperation gives us the explicit rules which govern
this: open-paths!

If we want a statistical dependency to reflect a causal
dependency we need to condition on variables such that we
block uninteresting (non-causal) paths

X1

X 2 X 3

X 4 X 5

2 / 74



Why are DAGs helpful?

DAGs allow us to “read off” all the paths by which two
variables are marginally and conditionally (in)dependent

• Formalizes the idea that two variables can be
statistically dependent in a particular way without one
being a cause of the other

• d-seperation gives us the explicit rules which govern
this: open-paths!

If we want a statistical dependency to reflect a causal
dependency we need to condition on variables such that we
block uninteresting (non-causal) paths

X1

X 2 X 3

X 4 X 5

2 / 74



Why are DAGs helpful?

DAGs allow us to “read off” all the paths by which two
variables are marginally and conditionally (in)dependent

• Formalizes the idea that two variables can be
statistically dependent in a particular way without one
being a cause of the other

• d-seperation gives us the explicit rules which govern
this: open-paths!

If we want a statistical dependency to reflect a causal
dependency we need to condition on variables such that we
block uninteresting (non-causal) paths

X1

X 2 X 3

X 4 X 5

2 / 74



Days 1 - 3: Causal Reasoning

expectations about 
observational data P(X1,...,X5)
& interventions        Pdo(X1,...,X5)

X 1 X 2 X 3 X 4 X 5

3.4 − 0.3 5.8 − 2.1 2.2
1.7 − 0.2 7.0 − 1.2 0.4

− 2.4 − 0.1 4.3 − 0.7 3.5
2.3 − 0.3 5.5 − 1.1 − 4.4
3.5 − 0.2 3.9 − 0.9 − 3.9
...

...
...

...
...

causal model, e.g. DAG G

X 1

X 2 X 3

X 4 X 5

infer
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This session: Causal Learning (also called: Causal Discovery / Structure Learning)

observational data P(X1,...,X5)

X 1 X 2 X 3 X 4 X 5

3.4 − 0.3 5.8 − 2.1 2.2
1.7 − 0.2 7.0 − 1.2 0.4
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Causal Learning

Causal Learning is somewhat different from Statistical Learning

Statistical Learning is concerned with finding a model with minimizes out-of-sample
prediction error.

• Using data observed under certain conditions to learn a model which enables us
to make predictions about what we expect to see in a new data point collected
under exactly those conditions

Causal Learning is more general, but harder.

• Using data to learn a model which enables predictions about new or different
situations. I.e., using observational data to learn about that says something about
the intervention setting.
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Example Causal vs Statistical Learning
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Example Causal vs Statistical Learning
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Example Causal vs Statistical Learning

Putting on our ”DAG hat”, we can saw that the answer to questions about
intervention effects depends on the causal graph (amongst other things)

For that reason, causal learning is often focused on recovering the structure of the
causal graph from data
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Example Causal vs Statistical Learning

The answer to questions about intervention effects depends on the causal graph

For that reason, causal learning is often focused on recovering the structure of the
causal graph from data

Causal learning has been applied most notably in fields like systems biology, genetic
research, neural connectivity research

• In these fields, predictions about the effects of do-interventions can be (relatively)
easily empirically validated, e.g., gene knockout experiments

• But these methods can and have been applied in other fields.

• These methods would not be considered mainstream in most fields, but
understanding how they work helps us think about the relation between causal
and statistical learning, causal data science principles, and more
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Causal Learning: An overview

In this session we will learn about three different strategies for causal discovery.

1 Using Conditional (In)dependence

2 Restricting the Structural Causal Model

3 Using Different Environments (data from multiple sources)

Different ways to exploit relationship between causal models and data: Different
assumptions, able to recover different things

Disclaimer: This is by no means a comprehensive review of causal discovery methods.
Instead, an introduction to three general strategies that show up in many
developments.
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Causal Discovery using
Conditional (In)Dependence



Fundamentals of Dependence and Causality
Well-known problem of causal discovery: Correlation does not imply causation
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Fundamentals of Dependence and Causality

Well-known problem of causal discovery: Correlation does not imply causation

Reichenbach’s Common Cause Principle
If X 6⊥⊥ Y then either:

• X → ...→ Y

• X ← ...← Y

• X and Y share a common cause

• A combination of the above

Or: we have unknowingly conditioned on a collider
Z

i.e. X 6⊥⊥ Y is actually X 6⊥⊥ Y |Z
In practice - selection bias
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Causal Discovery using Conditional Independence

Basic Idea:

1 Find all conditional independence relations present in the data

2 Draw the DAG in which all (and only) those independences follow from
d-seperation rules

Known as Constraint-Based (related to Score-Based) methods

Assume:

• Sufficiency: No unobserved common causes (for now)

• No selection bias (no conditioning on unobserved colliders)

• Faithfulness: We’ll explain that in a few slides time!
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Example 1: CI-based discovery

We gather a very large dataset containing three-variables: A, B and C

We choose an appropriate test for
independence and find:

A ⊥⊥ C

A 6⊥⊥ C | B

All other combinations of variables are
dependent (e.g. A 6⊥⊥ B, and B 6⊥⊥ C | A)

What is the data-generating DAG?

A C
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A C

B
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A C

B

A C

B

A C

B

A C

B

1) 2) 3)

4) 5) 6)

7) 8) 9)
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Example 2: CI-based discovery

We gather a very large dataset containing three-variables: A, B and C
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Basics of CI-based discovery

In the general case, we usually cannot uniquely identify the DAG based only on
patterns of statistical independence and dependence.

We already know this from d-seperation rules, since they tell us that different DAGs
can yield the same statistical dependencies

Markov Equivalence:

Two DAGs are Markov Equivalent if they satisfy the same d-seperation statements,
and so the same set of (conditional) (in)dependence relations
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Basics of CI-based discovery

But we can learn something about the underlying DAG!

Implications of d-seperation:

1 If two variables share a direct causal path X → Y OR X ← Y , then you can
never block that path by conditioning on other variables!
• If two variables are dependent no matter what we condition on, they share a

direct causal link of some direction

Colliders imply a different pattern of dependencies than chains and forks
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Basics of CI-based discovery

But we can learn something about the underlying DAG!

Implications of d-seperation:

1 If two variables share a direct causal path X → Y OR X ← Y , then you can
never block that path by conditioning on other variables!
• If two variables are dependent no matter what we condition on, they share a

direct causal link of some direction

2 Colliders imply a different pattern of dependencies than chains and forks
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The basics of CI-based discovery

CI-based methods can discover:

A Which variables share a direct causal link and which variables don’t
• This is known as the skeleton of a DAG
• If X → Y or X ← Y , then X and Y will never be statistically independent

(marginally or conditionally).

B If there’s a collider, we can detect the direction of causal arrows, as long as the
two “cause” variables don’t also cause each other
• Also known as an “immorality” - two parent nodes who share a child but are not

“married” (!!!)
• If everything is dependent on everything - very little can be learned!

In general, outside of (immoral) colliders, we can’t determine the direction of the
causal arrow
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Assumptions for CI-based discovery

Global Markov Condition:

P is Markov w.r.t G if
X and Y are d-seperated by S =⇒ X ⊥⊥ Y | S

Faithfulness:

P satisfies faithfulness w.r.t G if
X ⊥⊥ Y | S =⇒ X and Y are d-seperated by S

Essentially: Paths never “perfectly cancel out”
Statistical (conditional) Independence =⇒ causal independence (d-seperation)
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Violations of Faithfulness

A := εA

B := .5A+ εB

C := −.25A+ .5B + εC

where

• εA, εB, εC are iid, ∼ N (0, 1) A C

B
.5 .5

-.25

AB
C

 = N

0
0
0

 ,

1 .5 0
.5 1.25 .5
0 .5 1.25
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Violations of Faithfulness

A C

B

A C

B
.5 .5

-.25

A ⊥⊥ C

A 6⊥⊥ C | B

Assume Faithfulness

36 / 74



Violations of Faithfulness

A C

B

A C

B
.5 .5

-.25

A ⊥⊥ C

A 6⊥⊥ C | B

Assume Faithfulness

36 / 74



Violations of Faithfulness

A C

B

A C

B
.5 .5

-.25

A ⊥⊥ C

A 6⊥⊥ C | B

37 / 74



The basics of CI-based discovery

Typically CI-based methods cannot uniquely identify the underlying DAG from
observational data. Instead they can identify a Markov Equivalence set

Markov Equivalence:

Two DAGs are Markov Equivalent if they satisfy the same d-seperation statements,
and so the same set of (conditional) (in)dependence relations

You can determine whether two DAGs are markov-equivalent by checking:

A They have the same skeleton

B They have the same immoralities

Represented by a Complete Partially-Oriented Directed Acyclic Graph (CPDAG)

38 / 74



The basics of CI-based discovery

Typically CI-based methods cannot uniquely identify the underlying DAG from
observational data. Instead they can identify a Markov Equivalence set

Markov Equivalence:

Two DAGs are Markov Equivalent if they satisfy the same d-seperation statements,
and so the same set of (conditional) (in)dependence relations

You can determine whether two DAGs are markov-equivalent by checking:

A They have the same skeleton

B They have the same immoralities

Represented by a Complete Partially-Oriented Directed Acyclic Graph (CPDAG)

38 / 74



The basics of CI-based discovery

Typically CI-based methods cannot uniquely identify the underlying DAG from
observational data. Instead they can identify a Markov Equivalence set

Markov Equivalence:

Two DAGs are Markov Equivalent if they satisfy the same d-seperation statements,
and so the same set of (conditional) (in)dependence relations

You can determine whether two DAGs are markov-equivalent by checking:

A They have the same skeleton

B They have the same immoralities

Represented by a Complete Partially-Oriented Directed Acyclic Graph (CPDAG)

38 / 74



A C

B

A C

B
A C

B

A C

B

CPDAG Markov-Equivalence
Set

39 / 74



A C

B

CPDAG Markov-Equivalence
Set

D

E

A C

B D

E

A C

B D

E

40 / 74



In Practice

Orginal approaches: PC algorithm, FCI algorithm (Spirtes et al. 2000)

• Don’t need to test all independences, but can do a quicker “search”

• Extensions exist that deal with violations of sufficiency

• Still rely on faithfulness

Disadvantages:
• Population CI’s aren’t known: We need statistical tests + sample data

• All of statistics is relevant here, e.g., sample size considerations
• In a given sample : Type I and II errors
• Faithfulness 6= No false negatives!

• CI testing easy if linear + Gaussian (partial correlation / regression) or discrete
(cross-tables)
• Can be difficult in other cases (Shah & Peters, 2020)
• Non-parametric methods exist but require large sample size
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Causal Discovery with Conditional Independence: In a Nutshell

observational data P(X1,...,X5)

X 1 X 2 X 3 X 4 X 5

3.4 − 0.3 5.8 − 2.1 2.2
1.7 − 0.2 7.0 − 1.2 0.4

− 2.4 − 0.1 4.3 − 0.7 3.5
2.3 − 0.3 5.5 − 1.1 − 4.4
3.5 − 0.2 3.9 − 0.9 − 3.9
...

...
...

...
...

causal model, e.g. DAG G
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Restricted Causal Models



Restricted SCMs

Recall: SCMs are in principle non-parametric - relationships can take any form, and the
errors can have any distribution

In some special cases we can “buy” an ability to learn the causal structure if we are
willing to make more assumptions about the types of relationships and/or distribution
of the noise term in the SCM

Examples so far: Y := BX+ε, where ε is Gaussian, ε ∼ N(0, σ2)

• This is a special type of model called a linear model with additive Gaussian noise

• Recall: In an SCM, the noise variable is independent of the cause variable. ε ⊥⊥ X

• As we have seen: In general, many different causal models of this form that are
statistically equivalent
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Bivariate SCMs

X Y X Y
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Bivariate SCMs

X Y X Y

Y := BXX + εY εY ∼ N (0, σ2Y ) X := BY Y + εX εX ∼ N (0, σ2X)
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Bivariate SCMs: Linear with Gaussian Additive Noise

X Y Y := BX + εY εY ∼ N (0, σY
2)
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Bivariate SCMs: Linear with Gaussian Additive Noise

X Y Y := BX + εY εY ∼ N (0, σY
2)
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Restricted SCMs

If we are dealing with a bivariate system with linear relationships and Gaussian noise,
we can never distinguish if X → Y or Y → X.

• In the true model we know that the cause variable is independent of the error,
εY ⊥⊥ X

• But in this situation, when we fit a statistical model in the wrong causal
direction, we still get errors which are independent of the predictor, εX ⊥⊥ Y

But causal models are statistically distinguishable if we are willing to assume the SCM
is either:

A Linear Model with Non-Gaussian Additive Noise

B Non-Linear Model with Gaussian Additive Noise
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Bivariate SCMs: Linear with non-Gaussian Additive Noise

X Y Y := BX + εY εY∼ U(lb, ub)
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Bivariate SCMS: Linear with non-Gaussian Additive Noise
We assume an underlying SCM where the noise variable is independent of the cause
variables.

Y := BX + εY

εY ⊥⊥ X

If we fit a model with the “wrong” causal direction, the noise of that regression model
will not be independent of the predictors

X = BY Y + εX

εX 6⊥⊥ Y

This only works for non-Gaussian noise, but there it allows us to identify the direction
of the causal arrow!
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Bivariate SCMS: Linear with non-Gaussian Additive Noise

X Y Y := BX + εY εY∼ U(lb, ub)
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Bivariate SCMS: Non-Linear with Gaussian Additive Noise

X Y Y := sin(X) + εY εY ∼ N (0, σ2)

Yε X

XX

Y

Y Y

Xε
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Bivariate SCMS: Non-Linear with Gaussian Additive Noise

We assume an underlying SCM

Y := f(X) + εY

εY ⊥⊥ X

If f(X) is non-linear (e.g. sin(X), Xp, eX), there is no equivalent statistical model
that satisfies

X := g(Y ) + εX

εX ⊥⊥ Y

If we fit a model in the wrong causal direction, we will find εX 6⊥⊥ Y We can test this

by fitting non-linear models in both ‘directions’ and testing for independence of errors!
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Summary

Linear Non-Gaussian:

• LiNGAM algorithm (Shimizu et al.
2006)

• Extends this idea to the multivariate
case

• Can uniquely identify multivariate
DAGs!

Disadvantages:

• Need sufficiency (some extensions)

• How common are these systems?

• Degree of non-normality?

Non-Linear Gaussian:

• Mooij et al (2016)

• Use non-parametric/smoothing
methods

• If we know the noise distribution, can
choose best fitting model

• Works well in bivariate case with no
confounding

Disadvantages:

• Again, sufficiency needed

• Difficult to scale to multivariate case
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Restricted Causal Models: In a Nutshell

observational data P(X1,...,X5)

X 1 X 2 X 3 X 4 X 5

3.4 − 0.3 5.8 − 2.1 2.2
1.7 − 0.2 7.0 − 1.2 0.4

− 2.4 − 0.1 4.3 − 0.7 3.5
2.3 − 0.3 5.5 − 1.1 − 4.4
3.5 − 0.2 3.9 − 0.9 − 3.9
...

...
...

...
...

Assumptions 
about SCM

X 1

X 2 X 3

X 4 X 5

G

Non-Linear /
Non-Gaussian

Search for stat. 
model in which

Noise(X)

Parents (X) 
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Invariant Causal Prediction
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So far we looked at methods for causal discovery that work with a single
observational dataset

What if we have a mix of observational and experimental data? Can we do
something different?

This is the idea behind causal discovery using Invariant Causal Prediction
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Example

Observational Data

Y

X1 X 4

X 3 X 2

What open paths make up the statistical
dependency cor(Y,X1|X4)?

• X1→ Y

What open paths make up the statistical
dependency cor(Y,X3)?

• X3 → X4 → Y

• X3 → X1 → Y

• X3 → X4 → X1 → Y

60 / 74



Example

Observational Data

Y

X1 X 4

X 3 X 2

What open paths make up the statistical
dependency cor(Y,X1|X4)?

• X1→ Y

What open paths make up the statistical
dependency cor(Y,X3)?

• X3 → X4 → Y

• X3 → X1 → Y

• X3 → X4 → X1 → Y

60 / 74



Example

Observational Data

Y

X1 X 4

X 3 X 2

What open paths make up the statistical
dependency cor(Y,X1|X4)?

• X1→ Y

What open paths make up the statistical
dependency cor(Y,X3)?

• X3 → X4 → Y

• X3 → X1 → Y

• X3 → X4 → X1 → Y

60 / 74



Example

Observational Data

Y

X1 X 4

X 3 X 2

What open paths make up the statistical
dependency cor(Y,X1|X4)?

• X1→ Y

What open paths make up the statistical
dependency cor(Y,X3)?

• X3 → X4 → Y

• X3 → X1 → Y

• X3 → X4 → X1 → Y

60 / 74



Example

Intervention Data: e.g. do(X1)

Y

X1 X 4

X 3 X 2

What open paths make up the statistical
dependency cor(Y,X1|X4)?

• X1→ Y

What open paths make up the statistical
dependency cor(Y,X3)?

• X3 → X4 → Y
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Invariant Causal Prediction (ICP)

Basic Idea:

1 There is some unknown causal graph, but we
only care about learning the direct causes of
one target variable Y

2 We have data drawn from different
environments
• Here: A mix of observational and intervention

data
• Interventions act on variables other than Y

3 We identify the direct causes of Y by looking
for those conditional dependencies that are
invariant (remain the same) across
environments

X2 X 3

X 4 X 5

Y
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ICP: Key Assumption

Modularity and Localized Interventions:

We assume that it is possible to intervene on a variable without fundamentally
changing how it relates to other variables

• We can change p(X) without changing p(Y | X)

• We can change one cause-effect mechanism without changing the others
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ICP in Practice

Invariant Causal Prediction (Peters, Buhlmann, Meinshausen, 2016)

• Can be used even when it is not known what variables are intervened on or what
interventions are applied (“fat hand interventions”)

• Basic idea can be extended to other “environments” - non-descendants and time

• Can also be extended to learning the full graph, with some caveats

• Extended/Generalized to non-linear case

Disadvantages:

• Sufficiency (again, some extensions)

• (Subset of) environments where interventions do not act directly on Y

• Need different environments: The more environments the better!
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observational data P(X1,...,X5)

X 1 X 2 X 3 X 4 X 5

3.4 − 0.3 5.8 − 2.1 2.2
1.7 − 0.2 7.0 − 1.2 0.4

− 2.4 − 0.1 4.3 − 0.7 3.5
2.3 − 0.3 5.5 − 1.1 − 4.4
3.5 − 0.2 3.9 − 0.9 − 3.9
...

...
...

...
...

causal model, e.g. DAG G

X 1

X 2 X 3

X 4 X 5

infer

?
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In a Nutshell: ICP

observational data P(X1,...,X5)
&/ intervention data Pdo(X1,...,X5)

X 1 X 2 X 3 X 4 X 5

3.4 − 0.3 5.8 − 2.1 2.2
1.7 − 0.2 7.0 − 1.2 0.4

− 2.4 − 0.1 4.3 − 0.7 3.5
2.3 − 0.3 5.5 − 1.1 − 4.4
3.5 − 0.2 3.9 − 0.9 − 3.9
...

...
...

...
...

causal model, e.g. DAG G

X 2 X 3

X 4 X 5

infer

?

X 1 X 2 X 3 X 4 X 5

3.4 − 0.3 5.8 − 2.1 2.2
1.7 − 0.2 7.0 − 1.2 0.4

− 2.4 − 0.1 4.3 − 0.7 3.5
2.3 − 0.3 5.5 − 1.1 − 4.4
3.5 − 0.2 3.9 − 0.9 − 3.9
...

...
...

...
...

Y
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...
...

...
...

causal model, e.g. DAG G

X 2 X 3

X 4 X 5
Modularity

Interventions 
Not on Y

X 1 X 2 X 3 X 4 X 5

3.4 − 0.3 5.8 − 2.1 2.2
1.7 − 0.2 7.0 − 1.2 0.4

− 2.4 − 0.1 4.3 − 0.7 3.5
2.3 − 0.3 5.5 − 1.1 − 4.4
3.5 − 0.2 3.9 − 0.9 − 3.9
...

...
...

...
...

Y
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Causal Learning: An overview

Can we infer causal structure from data?

Short answer:

• It’s difficult

• There is usually more than one SCM that generates the same observational data

Long answer:

• Yes, or at least, we can learn something about the causal structure

• But only under certain conditions - if we are willing to make certain assumptions
about the causal system

• Note: This is a limitation of all science - no free lunch!
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Summary

In this lecture we learned about three different strategies for causal discovery.

1 Using Conditional (In)dependence
• Going from estimated conditional and marginal (in)dependence to the DAG structure
• Generally: Not able to uniquely identify the DAG, but instead a set of possible DAGs

(Markov Equivalence Set)

2 Restricting the Structural Causal Model
• If we know something about how exactly variables look like and/or relate to one

another, we can use that to identify the causal model!
• Specifically: Linear but Non-Gaussian or Non-linear models - succeed in getting a

single underlying DAG

3 Using Invariance and Data from Different Environments
• ICP: Look for predictive relationships that stay the same in different settings

(observational/interventional)
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Summary

There are different ways to exploit relationship between causal models and data to
recover the causal model itself: Different assumptions, able to recover different things

• Many extensions and combinations of these methods also exist, and different
strategies are possible

Learning predictive models 6= learning causal models

All causal learning methods need statistical techniques

• So problems of stat. learning also apply, e.g. sample size and data quality

• “Garbage in → garbage out”

No free lunch principle

• All discovery algorithms rely on assumptions about the underlying causal process

• Assumptions/Knowledge in → Knowledge Out
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• Credit some slides: Jonas Peeters Causal Discovery workshop

73 / 74



ICP Rationale

Let X → Y and let pa(Y ) denote all other direct causes of Y . Modularity implies

that: p(Y | X, pa(Y )) remains the same no matter whether we have:

• Observational data

• Data where we intervene on X

• Data where we intervene on a common cause of X and Y

However, p(Y | X, pa(Y )) will be different if:

• X is not a direct cause of Y (e.g., X ← Y )

• X → Y but we have intervened on Y

Invariant Causal Prediction: Only conditional dependence relationships (i.e.
predictions) that reflect direct cause-effect relationships (i.e. causal) will remain the
same (i.e. invariant) across different environments
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