Adjustment Sets and Approaches and limitations / critiques

Wouter van Amsterdam

2024-08-06

Wouter van Amsterdam — WvanAmsterdam — vanamsterdam.github.io

Table of contents

- Adjustment sets and approaches
- How to do adjustment
- Limitations of DAGs and SCMs
- SCM vs potential outcomes

Adjustment sets and approaches

Wouter van Amsterdam – WvanAmsterdam – vanamsterdam.github.io

How to find adjustment sets?

- adjustment sets:
 - the back-door criterion states that any set Z that blocks all backdoor paths from X to Y is a sufficient adjustment set for causal effect estimation of P(Y|do(X)) using the backdoor formula.
 - how do we find these sufficient sets?
 - what if there are multiple?
- adjustment: how to do this?
 - stratification
 - what is regression adjustment?
 - T-learner vs S-learner

Valid adjustment sets

dag

- in general:
 - PA_T (the direct parents of treatment $T:Z_1$) are a valid adjustment set
 - PA_Y (the direct parents of outcome $Y: Z_2$) are a valid adjustment set
- in this case:
 - W is also a valid adjustment set

Valid adjustment sets: picking one

- websites like dagitty.net and causalfusion.net provide user-friendly interfaces for creating and exporting DAGs, in addition:
 - valid adjustment sets (if they exist)
 - testable conditional independencies

$$P_x(y) = \sum_z P(y|x,z) \, P(z)$$

1

ချွှေမှုနွှေချိန်မှုနှုံ့ဖူn.net

							~
☆	8	CRX	۶		ı ط	W	•
	\checkmark \triangleright \neg	ration us Analy ctor ation Implication mal Inde c,z onstraint actual As n Restric dence Re	rsis ions pende ts ssump tions estrictio	ncies			
	Non-Para	ametric			Clea	ar	
	Load						
w c Estimation							
×			Deri	vatior	ſ		

How to do adjustment

Wouter van Amsterdam – Wvan Amsterdam – van amsterdam.github.io

What not to do

1. do univariable pre-screening against outcome (and / or treatment)

- this should maybe never be done
- especially not in the context of causal inference

Adjustment formula

$$P(y|do(x)) = \sum_{z} P(y|x,z)P(z)$$

- entails summing over all possible values of Z
- say Z is 5 categorical variables with each 3 categories, this means $4^5 = 1024$ estimates of:
 - P(y|x,z) for each value of x
- what if Z is continuous?
- in practice, researchers rely on smoothness assumptions (e.g. regression) to estimate P(Y|x,z) with a parametric model
- this assumption *can* be based on substantive causal knowledge, but often seems inspired rather pragmatism or necessity
- misspecification of this estimator leads to biased results (even if you know all the confounders)

Target queries

- up to now we've worked exclusively with P(y|do(t)): the probability of observing outcome y when setting treatment T to t
- this is not typically what is of most interest, say there are two treatment options $T \in \{0, 1\}$ (control and 'treatment')

1. average treatment effect

$$ATE = E[y|do(t = 1)] - E[y|do(t = 1)]$$

2. conditional average treatment effect

CATE = E[y|do(t = 1), w] - E[y|do(t = 0), w]

3. prediction-under-intervention P(y|do(t), w) (more on this on day 4)

• these can be computed from P(y|do(t), w)

= 0)]

The simplest case: linear regression

• assume the following structural causal model (z is confounder, u is exogenous noise):

$$f_y(t, z, u) = \beta_t t + \beta_z z + \beta_u u$$

• then:

ATE = E[Y|do(t = 1)] - E[Y|do(t = 0)]

• i.e. the ATE collapses to the the regression parameter β_t in a linear regression model of y on t, z

General estimators for the ATE and the CATE (meta-learners)

- denote $\tau(w) = E[y|do(t = 1), w] E[y|do(t = 0), w]$
 - (assuming W is a sufficient set)
- T-learner: model T = 0 and T = 1 separately (e.g. regression separately for treated and untreated):

 $\mu_0(w) = E[Y|do(T = 0), W = w]$ $\mu_1(w) = E[Y|do(T = 1), W = w]$ $\tau(w) = \mu_1(w) - \mu_0(w)$

• S-learner: use T as just another feature

$$\mu(t,w) = E[Y|T = t, W = w]$$

$$\tau(w) = \mu(1,w) - \mu(0,w)$$

• (many other variants combinations: this is a whole literature)

Intuitive way-pointers:

- where does the complexity come from?
 - a. variance in outcome under control: E[y|do(T = 0), w]
 - b. variance CATE: $\tau(w)$ (in statistics: *interaction* between treatment and covariate)

Where does the variance come from?

Figure 1: Three datasets with the same DAG

1. $Y = T + 0.5(X - \pi) + \epsilon$ (linear) 2. $Y = T + \sin(X) + \epsilon$ (non-linear additive) 3. $Y = T + \sin(X) - (1 - T) \sin(x) + \epsilon$ (non-linear + interaction)

Wouter van Amsterdam — WvanAmsterdam — vanamsterdam.github.io

Limitations of DAGs and SCMs

Wouter van Amsterdam – WvanAmsterdam – vanamsterdam.github.io

Making DAGs

- how do you get a DAG? up to now we assumed we had one
- based on prior evidence, expert knowledge
- "no causes in, no causes out"

A003024: The death of DAGs?

The number of possible DAGs grows super-exponentially in the number of nodes

n_nodes	n_dags	time at 1 s	
1	1		
2	3		
3	25		
4	543		
5	29281	> an hour	
6	3781503	> a day	
7	1138779265	> a year	
8	783702329343		
9	1213442454842881	> human s	
10	4175098976430598143	> age of un	

Wouter van Amsterdam — WvanAmsterdam — vanamsterdam.github.io

nber of nodes sec / DAG

pecies

niverse

Do we need to consider all DAGs?

- a single sufficient set suffices
- adjusting for all direct causes of the treatment or all direct causes of the outcome are always sufficent sets
- can we judge these without specifying all covariate-covariate relationships?
- potential approach:
 - put all potential confounders in a cluster (e.g Anand et al. 2023)
 - ignore covariate-covariate relationships in that cluster
 - what happens when (partial) missing data?

SCM vs potential outcomes

- definition of causal effect
 - PO: averages of individual potential outcomes
 - SCM: submodel or mutilated DAG
- both require positivity
- d-separation implies conditional independence (exchangeability)

References

Anand, Tara V., Adele H. Ribeiro, Jin Tian, and Elias Bareinboim. 2023. "Causal Effect Identification in Cluster DAGs." *Proceedings of the AAAI Conference on Artificial Intelligence* 37 (10): 12172–79. https://doi.org/10.1609/aaai.v37i10.26435.

