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Day 2 intro: Causal Directed Acyclic Graphs
and Structural Causal Models
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Today’s lectures
introduce 1.5 new framework based on

causal Directed Acyclic Graphs (DAGs)

Structral Causal Models (SCMs)

counterfactuals and Pearl’s Causal Hierarchy of questions

lectures will follow Pearl’s book Causality Pearl ( ), specifically chapters 3 (DAGs) and 7 (SCMs)2009
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Causal inference frameworks
What are they for?
Mathematical language to

define causal quantities

express assumptions

derive how to estimate causal quantities

Wouter van Amsterdam — WvanAmsterdam — vanamsterdam.github.io



Causal inference frameworks
Why learn more than one?

On day 1 we learned about the Potential Outcomes framework

Defines causal effects in terms of (averages of) individual potential outcomes

Estimation requires assumptions of (conditional) exchangeability and positivity / overlap and consistency

There isn’t only 1 way to think about causality, find one that ‘clicks’

Now we will learn another framework: Structural Causal Models and causal graphs

causal relations and manipulations of variables

Developed by different people initially - Judea Pearl, Peter Spirtes, Clark Glymour

SCM approach is broader in that it can define more different types of causal questions

Equivalence: given the same data and assumptions, get the same estimates
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Lecture 1 & 2 topics
motivating examples for DAGs

what are DAGs

causal inference with DAGs

what is an intervention

DAG-structures: confounding, mediation, colliders

d-separation

back-door criterion
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Motivating examples
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Example task: are hospital deliveries good for babies?
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Example task: are hospital deliveries good for babies?
You’re a data scientist in a children’s hospital

Have data on

delivery location (home or hospital)

neonatal outcomes (good or bad)

pregnancy risk (high or low)

Question: do hospital deliveries result in better outcomes for babies?
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Observed data
percentage of good neonatal outcomes

location

home hospital

risk low 648 / 720 = 90% 19 / 20 = 95%

high 40 / 80 = 50% 144 / 180 = 80%

better outcomes for babies delivered in the hospital for both risk groups
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Observed data
location

home hospital

risk low 648 / 720 = 90% 19 / 20 = 95%

high 40 / 80 = 50% 144 / 180 = 80%

marginal 688 / 800 = 86% 163 / 200 = 81.5%

better outcomes for babies delivered in the hospital for both risk groups

but not better marginal (‘overall’)

how is this possible?

what is the correct way to estimate the effect of delivery location?
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New question: hernia
for a patient with a hernia, will they be able to walk sooner when recovering at home or when recovering in a
hospital?

observed data: location, recovery, bed-rest
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Observed data 2
location

home hospital

bedrest no 648 / 720 = 90% 19 / 20 = 95%

yes 40 / 80 = 50% 144 / 180 = 80%

marginal 688 / 800 = 86% 163 / 200 = 81.5%

more bed rest in hospital

what is the correct way to estimate the effect of location?
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How to unravel this?
we got two questions with exactly the same data

in one example, ‘stratified analysis’ seemed best

in the other example, ‘marginal analysis’ seemed best

need a language to formalize this differentness

with Directed Acyclic Graphs we can make our decision
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Causal Directed Acyclic Graphs
diagram that represents our assumptions on causal relations

1. this is not the only use of DAGs (see )

1. nodes are variables

2. arrows (directed edges) point from cause to effect

Figure 1: Directed Acyclic Graph

when used to convey causal assumptions, DAGs are ‘causal’ DAGs1

day 4
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Making DAGs for our examples:
The pregnancy DAG

Figure 2

assumptions:

women with high risk of bad neonatal outcomes (pregnancy risk) are referred to the hospital for delivery

hospital deliveries lead to better outcomes for babies as more emergency treatments possible

both pregnancy risk and hospital delivery cause neonatal outcome

the other variable pregnancy risk is a common cause of the treatment (hospital delivery) and the
outcome (this is called a confounder)
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Making DAGs for our examples:
The hernia DAG

Figure 3

assumptions:

patients admitted to the hospital keep more bed rest than those who remain at home

bed rest leads to lower recovery times thus less walking patients after 1 week

the other variable bed rest is a mediator between the treatment (hospitalized) and the outcome
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Causal DAGs to the rescue
the other variable was:

a common cause (confounder) of the treatment and outcome in the pregnancy example

a mediator between the treatment and the outcome in the hernia example

using our background knowledge we could see something is different about these examples

this insight prompted us to a different analysis

next: ground this in causal theory and see implications for analysis
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DAG definitions and properties

Wouter van Amsterdam — WvanAmsterdam — vanamsterdam.github.io



DAGs convey two types of assumptions:
causal direction and conditional independence
1. causal direction: what causes what?

Figure 4: DAG 1 DAG 2

read  asFigure 4

sprinkler on may (or may not) cause wet floor

wet floor cannot cause sprinkler on
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Basic DAG patterns: fork

Figure 5: fork / confounder

 causes both  and  (common cause / confounder)𝑍 𝑋 𝑌

 = sun rises,  = rooster crows,  = temperature rises𝑍 𝑋 𝑌

 (i.e.   and  are dependent)𝑋⊥ 𝑌⧸ 𝑋 𝑌

 (conditioning on the sun rising, the rooster crowing has no
information on the temperature)
𝑋 ⊥ 𝑌 |𝑍

 is a back-door: a path between  and  that starts with an arrow into𝑍 → 𝑋 𝑋 𝑌
𝑋

typically want to adjust for  (see )𝑍 later 6.4
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Basic DAG patterns: chain

Figure 6: chain / mediation

 mediates effect of  on 𝑀 𝑋 𝑌

: student signs up for causal inference course, : student studies causal
inference, : student understands causal inference
𝑋 𝑀

𝑌

 (i.e.   and  are dependent)𝑋⊥ 𝑌⧸ 𝑋 𝑌

𝑋 ⊥ 𝑌 |𝑀

typically do not want to adjust for  when estimating total effect of  on 𝑀 𝑋 𝑌
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Basic DAG patterns: collider

Figure 7: collider

 and  both cause 𝑋 𝑌 𝑍

 (but NOT when conditioning on )𝑋 ⊥ 𝑌 𝑍

often do not want to condition on  as this induces a correlation between  and𝑍 𝑋

𝑌
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Collider bias - Tinder

Figure 8:

(a) collider

intelligent
attractive
on tinder

∼ 𝑈[0, 1]
∼ 𝑈[0, 1]
= 𝐼 intelligent+attractive<1

Figure 9
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Conditioning on a collider creates dependence of its parents
may not be too visible: doing an analysis in a selected subgroup is a form of (‘invisible’) conditioning

e.g. when selecting only patients in the hospital

being admitted to the hospital is a collider (has many different causes, e.g. traffic accident or fever)

usually only one of these is the reason for hospital admission

the causes for hospital admission now seem anti-correlated

Wouter van Amsterdam — WvanAmsterdam — vanamsterdam.github.io



DAGs convey two types of assumptions:
causal direction and conditional independence
1. conditional indepence (e.g. exclusion of influence / information)

Figure 10: DAG 1 Figure 11: DAG 2 Figure 12: DAG 3

 says fire can only cause wet floor through sprinkler onFigure 10

this implies fire is independent of wet floor given sprinkler on and can be tested!

 says there may be other ways through which fire causes wet floorFigure 11

 is thus a weaker assumption than Figure 11 Figure 10

 is also compatible with Figure 12 Figure 11
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DAGs are ‘non-parametric’
They relay what variable ‘listens’ to what, but not in what way

DAG

this DAG says  is a function of  and external noise , or:𝑌 𝑋, 𝑇 𝑈𝑌

𝑌 = (𝑋, 𝑇 , )𝑓𝑌 𝑈𝑌

in the  we’ll talk more about these ‘structural equations’next lecture
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DAGs are ‘non-parametric’
They relay what variable ‘listens’ to what, but not in what way

DAG

Figure 13: Three datasets with the same DAG

1.  (linear)𝑌 = 𝑇 + 0.5(𝑋 − 𝜋) + 𝜖
2.  (non-linear additive)𝑌 = 𝑇 + sin(𝑋) + 𝜖
3.  (non-linear + interaction)𝑌 = 𝑇 ∗ sin(𝑋) − (1 − 𝑇 ) sin(𝑥) + 𝜖
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Mini Quiz
Google Form https://bit.ly/dagquiz
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From Directed Acyclic Graphs to causality
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The DAG definition of an intervention
assume this is our DAG for a situation and we want to learn the effect  has on 𝑇 𝑌

in the graph, intervening on variable  means removing all incoming arrows𝑇

this assumes such a modular intervention is possible: i.e. leave everything else unaltered

Figure 14: observational data Figure 15: intervened DAG

which means  does not listen to other variables anymore, but is set at a particular value, like in an experiment𝑇

imagining this scenario requires a well-defined treatment variable (akin to consistency)
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Intervention example: hospital deliveries

Figure 16: observ(ational /ed) data: hospital delivery depends on pregnancy
outcome risk

Figure 17: hypothetical situation: send all pregnancies to hospital or home,
regardless of risk

this is called graph surgery because we cut all the arrows going to the treatment (hospital delivery)
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From graph to data
we now have a graphical definition of an intervention, how to map this onto data?

All we need is basic probability applied to the DAG

product rule: 𝑃 (𝐴, 𝐵) = 𝑃 (𝐴|𝐵)𝑃 (𝐵)
sum rule: 𝑃 (𝐴) = 𝑃 (𝐴|𝐵)𝑃 (𝐵)∑ 𝐵

total probability: 𝑃 (𝐴|𝐶) = 𝑃 (𝐴|𝐵,𝐶)𝑃 (𝐵|𝐶)∑ 𝐵

See the preporatory math lecuture
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DAGs imply a causal factorization of the joint distribution
assume these variables : treatment, : outcome, : ‘other’ variable𝑇 𝑌 𝑍

the product rule allows us to write this joint in many (9) different factorizations, 𝑃 (𝑌 , 𝑇 , 𝑍) =
𝑃 (𝑌 |𝑇 , 𝑍)𝑃 (𝑇 , 𝑍)
𝑃 (𝑍|𝑇 , 𝑌 )𝑃 (𝑇 , 𝑌 )
𝑃 (𝑌 |𝑇 , 𝑍)𝑃 (𝑇 |𝑍)𝑃 (𝑍)
…

whereas all of these are correct, knowing the DAG, one of these is special: the causal factorization
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DAGs imply a causal factorization of the joint distribution

Figure 18: observational data

𝑃 (𝑌 , 𝑇 , 𝑍) = 𝑃 (𝑌 |𝑇 , 𝑍)𝑃 (𝑇 , 𝑍)
= 𝑃 (𝑌 |𝑇 , 𝑍)𝑃 (𝑇 |𝑍)𝑃 (𝑍)

2 times the product rule

If this looks complicated: just follow the arrows, starting with variables with no incoming arrows
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Intervention as graph surgery
Why is the causal factorization special?

Figure 19: observational data Figure 20: intervened DAG

(𝑌 , 𝑇 , 𝑍)𝑃obs = 𝑃 (𝑌 |𝑇 , 𝑍)𝑃 (𝑇 |𝑍)𝑃 (𝑍) (𝑌 , 𝑇 , 𝑍)𝑃int = 𝑃 (𝑌 |𝑇 , 𝑍)𝑃 (𝑇 )𝑃 (𝑍)

in the causal factorization, intervening on  means changing only one of the conditionals in the factorization, the
others remain the same

𝑇

this is what is meant with a modular intervention
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Intervention as graph surgery
Connection with probabilities

the conditional distribution of  given  is denoted as  (‘seeing’)𝑌 𝑇 𝑃 (𝑌 |𝑇 )

the causal effect of  on  is denoted , which is  given  in the graph where all arrows coming in to
 are removed (‘doing’)

𝑇 𝑌 𝑃 (𝑌 |do(𝑇 )) 𝑌 𝑇

𝑇

we compute this from the truncated factorization, which comes from the causal factorization by removing
:𝑃 (𝑇 |𝑍)

causal factorization: 𝑃 (𝑌 |𝑇 , 𝑍)𝑃 (𝑇 |𝑍)𝑃 (𝑍)
truncated factorization: 𝑃 (𝑌 |𝑇 , 𝑍)𝑃 (𝑍)
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Intervention as graph surgery
Changed distribution

Figure 21: observational data Figure 22: intervened DAG

(𝑌 , 𝑇 , 𝑍)𝑃obs

(𝑌 |𝑇 )𝑃obs

= 𝑃 (𝑌 |𝑇 , 𝑍)𝑃 (𝑇 |𝑍)𝑃 (𝑍)
= 𝑃 (𝑌 |𝑇 , 𝑍 = 𝑧)𝑃 (𝑍 = 𝑧|𝑇 )∑

𝑧

(𝑌 , 𝑇 , 𝑍)𝑃int

(𝑌 |𝑇 )𝑃int

= 𝑃 (𝑌 |𝑇 , 𝑍)𝑃 (𝑇 )𝑃 (𝑍)
= 𝑃 (𝑌 |𝑇 , 𝑍 = 𝑧)𝑃 (𝑍 = 𝑧|𝑇 )∑

𝑧
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Intervention as graph surgery - changed distribution

Figure 23: observational data

(𝑌 |𝑇 ) = 𝑃 (𝑌 |𝑇 , 𝑍 = 𝑧)𝑃 (𝑍 = 𝑧|𝑇 )𝑃obs ∑
𝑧

Figure 24: intervened DAG

(𝑌 |𝑇 ) = 𝑃 (𝑌 |𝑇 , 𝑍 = 𝑧)𝑃 (𝑍 = 𝑧) (1)𝑃int ∑
𝑧

in , 𝑃obs 𝑃 (𝑍|𝑇 ) ≠ 𝑃 (𝑍)
in , 𝑃int 𝑃 (𝑍|𝑇 ) = 𝑃 (𝑍)
thereby (𝑌 |𝑇 ) ≠ (𝑃 (𝑌 |𝑇 )) = 𝑃 (𝑌 |do(𝑇 ))𝑃obs 𝑃int

seeing is not doing

looking at , we can compute these from ! (this is what is called an estimand)Equation 1 𝑃obs
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Back to example 1
Seeing

DAG

location

home hospital

risk low 648 / 720 = 90% 19 / 20 = 95%

high 40 / 80 = 50% 144 / 180 = 80%

marginal 688 / 800 = 86% 163 / 200 = 81.5%

seeing: 𝑃 (outcome|location) = 𝑃 (outcome|location, risk)𝑃 (risk|location)∑ risk

𝑃 (risk = low|location = hospital) = 10%
𝑃 (risk = low|location = home) = 90%

𝑃 (outcome|location = hospital)
𝑃 (outcome|location = home)

= 95 ∗ 0.1 + 80 ∗ 0.9 = 81.5%
= 90 ∗ 0.9 + 50 ∗ 0.1 = 86%
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conclusion: deliveries in the hospital had worse neonatal outcomes
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Back to example 1

DAG

location

home hospital

risk low 648 / 720 = 90% 19 / 20 = 95%

high 40 / 80 = 50% 144 / 180 = 80%

marginal 688 / 800 = 86% 163 / 200 = 81.5%

estimand: 𝑃 (outcome|do(location)) = 𝑃 (outcome|location, risk)𝑃 (risk)∑ risk

𝑃 (risk = low) = 74%

𝑃 (outcome|do(hospital))
𝑃 (outcome|do(home))

= 95 ∗ 0.74 + 80 ∗ 0.26 = 91.1%
= 90 ∗ 0.74 + 50 ∗ 0.26 = 79.6%

conclusion: sending all deliveries to the hospital leads to better neonatal outcomes
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Back to example 2

DAG

removing all arrows going in to  results in the same
DAG

𝑇

so 𝑃 (𝑌 |𝑇 ) = 𝑃 (𝑌 |do(𝑇 ))
i.e. use the marginals
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The gist of observational causal inference
is to take data we have to make inferences about data from a different distribution (i.e. the intervened-on
distribution)

Figure 25: observational data:
data we have

Figure 26: intervened DAG: what
we want to know

causal inference frameworks provide a language to express assumptions

based on these assumptions, the framework tells us whether such an inference is possible

this is often referred to as is the effect identified

and provide formula(s) for how to do so based on the observed data distribution
(estimand(s))

(one could say this is essentially assumption-based extrapolation, some researchers think
this entire enterprise is anti-scientific)

not yet said: how to do statistical inference to estimate the estimand (much can still go
wrong here)

can also be part of identification, see the following lecture on SCMs
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Beyond toy examples: d-separation and
back-door criterion
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When life gets complicated / real

Bogie, James; Fleming, Michael; Cullen, Breda; Mackay, Daniel; Pell, Jill P. (2021). Full directed acyclic graph.. PLOS ONE. Figure.
https://doi.org/10.1371/journal.pone.0249258.s003
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d-separation (directional-separation)

paths

a path is a set of nodes connected by edges ( )𝑥… 𝑦

a directed-path is a path with a constant direction ( )𝑥… 𝑡

an unblocked-path is a path without a collider ( )𝑡… 𝑦

a blocked-path is a path with a collider ( )𝑠, 𝑡, 𝑢

d(irectional)-separation of  means there is no unblocked path between them𝑥, 𝑦
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d-separation when conditioning

paths with conditioning variables , 𝑟 𝑡

conditioning on variable:

when variable is a collider: opens a path (  opens  etc.)𝑡 𝑠, 𝑡, 𝑢

otherwise: blocks a path (e.g.   blocks )𝑟 𝑥, 𝑟, 𝑠

conditioning set : set of conditioning variables𝑍 = {𝑟, 𝑡}
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The back-door criterion and adjustment
Definition 3.3.1 (Back-Door) (for pairs of variables)
A set of variables  satisfies the back-door criterion relative to an ordered pair of variables  in a DAG if:𝑍 (𝑋, 𝑌 )

1. no node in  is a descendant of  (e.g. mediators)𝑍 𝑋

2.  blocks every path between  and  that contains an arrow into 𝑍 𝑋 𝑌 𝑋

Theorem 3.2.2 (Back-Door Adjustment)
If a set of variables  satisfies the back-door criterion relative to , then the causal effect of  on  is
identifiable and is given by the formula

𝑍 (𝑋, 𝑌 ) 𝑋 𝑌

𝑃 (𝑦|do(𝑥)) = 𝑃 (𝑦|𝑥, 𝑧)𝑃 (𝑧) (2)∑
𝑧
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Did we see this equation before?
Yes! When computing the effect of hospital deliveries on neonatal outcomes Equation 1

DAGs tell us what to adjust for

automatic algorithms tell use whether an estimand exists and what it is

several point-and-click websites for making DAGs that implement these algorithms:

dagitty.net

causalfusion.net
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How about positivity
backdoor adjustment with  requires computing 𝑧 𝑃 (𝑦|𝑥, 𝑧)
by the product rule:

𝑃 (𝑦|𝑥, 𝑧) = 𝑃 (𝑦, 𝑥, 𝑧)
𝑃 (𝑥, 𝑧)

this division is only defined when 𝑃 (𝑥, 𝑧) > 0
which is the same as the positivity assumption from Day 1 in Potential Outcomes
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