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Day 2 intro: Causal Directed Acyclic Graphs
and Structural Causal Models



Today’s lectures

e introduce 1.5 new framework based on
= causal Directed Acyclic Graphs (DAGS)
m Structral Causal Models (SCMs)
e counterfactuals and Pearl’s Causal Hierarchy of questions

e lectures will follow Pearl’s book Causality Pearl (2009), specifically chapters 3 (DAGs) and 7 (SCMs)
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Causal inference frameworks
What are they for?

Mathematical language to

e define causal quantities
® express assumptions

e derive how to estimate causal quantities
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Causal inference frameworks
Why learn more than one?

e Onday 1 we learned about the Potential Outcomes framework

= Defines causal effects in terms of (averages of) individual potential outcomes

= Estimation requires assumptions of (conditional) exchangeability and positivity / overlap and consistency
e Thereisn’t only 1 way to think about causality, find one that ‘clicks’

e Now we will learn another framework: Structural Causal Models and causal graphs

= causal relations and manipulations of variables

= Developed by different people initially - Judea Pearl, Peter Spirtes, Clark Glymour
= SCM approach is broader in that it can define more different types of causal questions

e Equivalence: given the same data and assumptions, get the same estimates
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Lecture 1 & 2 topics

e motivating examples for DAGs

e what are DAGs

e causal inference with DAGs
= what is an intervention
s DAG-structures: confounding, mediation, colliders
= d-separation

m back-door criterion
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Motivating examples



Example task: are hospital deliveries good for babies?
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Example task: are hospital deliveries good for babies?

e You’re a data scientist in a children’s hospital

e Have dataon

m delivery location (home or hospital)
= neonatal outcomes (good or bad)
= pregnancy risk (high or low)

e Question: do hospital deliveries result in better outcomes for babies?
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Observed data

percentage of good neonatal outcomes

location

home hospital

risk low 648 /720=90% 19/20=95%

high 40 /80=50% 144 /180 =80%

e better outcomes for babies delivered in the hospital for both risk groups
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Observed data

location
home hospital
risk low 648 / 720 =90% 19/20=95%
nigh 40 /80 =50% 144 / 180 = 80%

marginal 688 /800=86% 163/200=81.5%

e better outcomes for babies delivered in the hospital for both risk groups
e but not better marginal (‘overall’)
e how is this possible?

e whatis the correct way to estimate the effect of delivery location?

Wouter van Amsterdam — WvanAmsterdam — vanamsterdam.github.io



New question: hernia

e for a patient with a hernia, will they be able to walk sooner when recovering at home or when recoveringin a
hospital?

e observed data: location, recovery, bed-rest
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Observed data 2

location
home hospital
bedrest no 648 / 720 =90% 19/20=95%
yes 40/80=50% 144 /180=80%

marginal 688 /800=86% 163/200=281.5%

e more bed rest in hospital

e whatis the correct way to estimate the effect of location?
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How to unravel this?

e we got two questions with exactly the same data

e inone example, ‘stratified analysis’ seemed best

e inthe other example, ‘marginal analysis’ seemed best
e need a language to formalize this differentness

e with Directed Acyclic Graphs we can make our decision
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Causal Directed Acyclic Graphs
diagram that represents our assumptions on causal relations

1. nodes are variables

2. arrows (directed edges) point from cause to effect

fire

sprinkler on " wet floor

Figure 1: Directed Acyclic Graph

e when used to convey causal assumptions, DAGs are ‘causal’ DAGs*

1. this is not the only use of DAGs (see day 4)
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http://localhost:1234/lectures/day4-causal-predictions/lec1.html

Making DAGs for our examples:
The pregnancy DAG

pregnancy risk

hospital delivery ' neonatal outcome

Figure 2

e assumptions:
= women with high risk of bad neonatal outcomes (pregnancy risk) are referred to the hospital for delivery
= hospital deliveries lead to better outcomes for babies as more emergency treatments possible
= both pregnancy riskandhospital delivery cause neonatal outcome

e the othervariable pregnancy riskisacommon cause of the treatment (hospital delivery) and the
outcome (this is called a confounder)
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Making DAGs for our examples:
The hernia DAG

bed rest

hospitalized 1 walks after 1 week

Figure 3

e assumptions:

= patients admitted to the hospital keep more bed rest than those who remain at home

= bed rest leads to lower recovery times thus less walking patients after 1 week

e the othervariable bed rest is a mediator between the treatment (hospitalized) and the outcome
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Causal DAGs to the rescue

e the other variable was:
= a common cause (confounder) of the treatment and outcome in the pregnancy example

= 3 mediator between the treatment and the outcome in the hernia example

e using our background knowledge we could see something is different about these examples
e thisinsight prompted us to a different analysis

e next: ground this in causal theory and see implications for analysis
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DAG definitions and properties



DAGs convey two types of assumptions:
causal direction and conditional independence

1. causal direction: what causes what?

sprinkler on ' wet floor sprinkler on k wet floor

Figure 4: DAG 1 DAG 2

e read Figure 4 as
= sprinkler on may (or may not) causewet floor

m wet floor cannotcausesprinkler on
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Basic DAG patterns: fork

o Z causes both X and Y (common cause / confounder)
e /Z =sunrises, X =rooster crows, Y =temperature rises

Z
/ \ e X/ Y (i.,e.X and Y are dependent)
X Y

e X 1 Y|Z (conditioning on the sun rising, the rooster crowing has no
information on the temperature)

e / — Xisaback-door: a path between X and Y that starts with an arrow into
X

Figure 5: fork / confounder

e typically want to adjust for Z (see later 6.4)
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Basic DAG patterns: chain

e M mediates effectof XonY

e X:studentsigns up for causal inference course, M : student studies causal
/ \ inference, Y : student understands causal inference
e XY Y (i.,e.Xand Y are dependent)
X Y ex1vM

e typically do not want to adjust for M when estimating total effect of X on'Y

Figure 6: chain / mediation
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Basic DAG patterns: collider

e X and Y both cause Z
e X 1 Y (but NOT when conditioning on Z)

/ \ e often do not want to condition on Z as this induces a correlation between X and
Y

Figure 7: collider
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Collider bias - Tinder

X/Z\Y

(a) collider

on tinder

® noton tinder

attractive

Figure 8: intelligent

intelligent ~ U[O0, 1] Figure 9
attractive ~ U[0, 1]
on tinder = I intelligent+attractive<|1
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Conditioning on a collider creates dependence of its parents

e may not be too visible: doing an analysis in a selected subgroup is a form of (‘invisible’) conditioning
e e.g. when selecting only patients in the hospital
= being admitted to the hospital is a collider (has many different causes, e.g. traffic accident or fever)
= usually only one of these is the reason for hospital admission

= the causes for hospital admission now seem anti-correlated
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DAGs convey two types of assumptions:

causal direction and conditional independence

1. conditional indepence (e.g. exclusion of influence / information)

fire

sprinkler on

1 wet floor

Figure 10: DAG 1

e Figure 10 says fire canonly causewet floorthrough sprinkler on

fire

sprinkler on

1 wet floor

Figure 11: DAG 2

fire

» broken pipe

sprinkler on

Figure 12: DAG 3

= thisimplies fireisindependentofwet floor givensprinkler on and can be tested!

e Figure 11 says there may be other ways through which fire causeswet floor

= Figure 11 is thus a weaker assumption than Figure 10

e Figure 12 is also compatible with Figure 11
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DAGs are ‘hon-parametric’
They relay what variable ‘listens’ to what, but not in what way

)f e this DAG says Y is a function of X, T and external noise Uy, or:
Ly e Y = fy(X,T,Uy)

AC e inthe next lecture we’ll talk more about these ‘structural equations’
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http://localhost:1234/lectures/day2-scms/lec3-scms.html

DAGs are ‘non-parametric’
They relay what variable ‘listens’ to what, but not in what way

factor(t)

DAG

Figure 13: Three datasets with the same DAG

1.Y =T +05X-m) + ¢ (linear)

2.Y =T + sin(X) + € (non-linear additive)

3.Y =T + sin(X) — (1 — T)sin(x) + € (non-linear + interaction)
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Mini Quiz

Google Form https://bit.ly/dagquiz



https://bit.ly/dagquiz

From Directed Acyclic Graphs to causality



The DAG definition of an intervention

assume this is our DAG for a situation and we want to learn the effect T hason Y

e inthe graph, intervening on variable T means removing all incoming arrows

e this assumes such a modular intervention is possible: i.e. leave everything else unaltered

|44 Z 44 A
.._, l
1 > Y A > Y

Figure 14: observational data Figure 15: intervened DAG

e which means T does not listen to other variables anymore, but is set at a particular value, like in an experiment

e imagining this scenario requires a well-defined treatment variable (akin to consistency)
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Intervention example: hospital deliveries

pregnancy risk

hospital delivery

1 neonatal outcome

Figure 16: observ(ational /ed) data: hospital delivery depends on pregnancy

outcome risk

pregnancy risk

hospital delivery

¥ neonatal outcome

Figure 17: hypothetical situation: send all pregnancies to hospital or home,

regardless of risk

e thisis called graph surgery because we cut all the arrows going to the treatment (hospital delivery)
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From graph to data

e we now have a graphical definition of an intervention, how to map this onto data?

Q All we need is basic probability applied to the DAG

e productrule: P(A,B) = P(A|B)P(B)
* sumrule:P(A) =% 5 P(A|B)P(B)
* total probability: P(A|C) =X 5z P(A|B,C)P(B|C)

See the preporatory math lecuture
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http://localhost:1234/lectures/prep/math.html

DAGs imply a causal factorization of the joint distribution

e assume these variables T': treatment, Y : outcome, Z: ‘other’ variable

e the product rule allows us to write this joint in many (9) different factorizations, P(Y ,T ,Z) =
» P(Y|T,Z)P(T,Z)
O P(ZlT, Y)P(T,Y)

" P(Y|T,2)P(T|Z)P(2)

e whereas all of these are correct, knowing the DAG, one of these is special: the causal factorization
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DAGs imply a causal factorization of the joint distribution

Z P(Y.T.Z)=P(Y|T,Z2)P(T,Z)
T/ \*Y =P(Y|T,Z)P(T|Z2)P(Z)

Figure 18: observational data e 2 timesthe prOdUCt rule

e |f this looks complicated: just follow the arrows, starting with variables with no incoming arrows
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Intervention as graph surgery
Why is the causal factorization special?

TL/Z\>Y T Z\>Y

Figure 19: observational data Figure 20: intervened DAG

Poos(Y,T,2) = P(Y|T,Z)P(T|2)P(2) Pin(Y,T,Z) = P(Y|T,2)P(T)P(2)

e inthe causal factorization, intervening on T means changing only one of the conditionals in the factorization, the
others remain the same

e thisiswhatis meant with a modular intervention
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Intervention as graph surgery
Connection with probabilities

e the conditional distribution of Y given T is denoted as P(Y |T) (‘seeing’)

e the causal effectof T onY isdenoted P(Y |do(T)), whichisY given T in the graph where all arrows coming in to
T are removed (‘doing’)

e we compute this from the truncated factorization, which comes from the causal factorization by removing
P(T|Z):
» causal factorization: P(Y |T ,Z)P(T|Z)P(Z)
= truncated factorization: P(Y |T ,Z)P (Z)

Wouter van Amsterdam — WvanAmsterdam — vanamsterdam.github.io



Intervention as graph surgery
Changed distribution

Z Z
1 > Y 1 > Y
Figure 21: observational data Figure 22: intervened DAG
Pors(Y,T,2) = P(Y|T,2)P(T|2)P(Z) Pw(Y,T,Z)=P(Y|T,Z)P(T)P(Z)

Pous(Y|T)= Y P(Y|T,Z=2)P(Z =z|T) Pii(Y|T) = ) P(Y|T.Z=2)P(Z = z|T)
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Intervention as graph surgery - changed distribution

1 > Y 1 > Y
Figure 23: observational data Figure 24: intervened DAG
Pos(Y|T) = ) P(Y|T.Z=2)P(Z=z|T) Pm(Y|T)= ) PY|T.Z=2P(Z=2) (1)
Z z

® inPyys, P(Z|T) # P(Z)

* inPin, P(Z|T) = P(2)

o thereby Pobs(Y'|T) # Pint(P(Y|T)) = P(Y |do(T))
e seeingis not doing

e looking at Equation 1, we can compute these from P! (this is what is called an estimand)
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Back to example 1
Seeing

pregnancy risk

location

home

hospital

risk low

648 / 720 =90%

19 /20=95%

high

40 / 80 =50%

144 / 180 =80%

hospital delivery

DAG

e seeing: P(outcome|location) =

1 neonatal outcome

marginal

688 / 800 = 86%

P (outcome|location, risk)P (risk|location)

e P(risk = low|location = hospital) = 10%

e P(risk = low|location = home) = 90%

P (outcome|location = hospital) =95 « 0.1 + 80 « 0.9 = 81.5%
P (outcome|location = home) =90 % 0.9 + 50 « 0.1 = 86%
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e conclusion: deliveries in the hospital had worse neonatal outcomes
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Back to example 1

hospital delivery

pregnancy risk location
home hospital
risk low 648 / 720 =90% 19/20=95%
nigh 40 / 80 =50% 144 / 180 = 80%

marginal 688 /800 =86%

DAG

e estimand: P (outcome|do(location)) = >

1 neonatal outcome

o P (outcome|location, risk)P (risk)

e P(risk = low) = 74%

P (outcome|do(hospital)) =95 « 0.74 + 80 « 0.26 = 91.1%
P (outcome|do(home)) = 90 = 0.74 + 50 x 0.26 = 79.6%

e conclusion: sending all deliveries to the hospital leads to better neonatal outcomes
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Back to example 2

bed rest e removing all arrows goinginto T results in the same
DAG

e sSoP(Y|T) = P(Y|do(T))

e j.e.usethe marginals

hospitalized ' walks after 1 week

DAG
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The gist of observational causal inference

is to take data we have to make inferences about data from a different distribution (i.e. the intervened-on
distribution)

W Z e causal inference frameworks provide a language to express assumptions
l / l e based on these assumptions, the framework tells us whether such an inference is possible
T—Y

m this is often referred to as is the effect identified

Figure 25: observational data:
data we have

e and provide formula(s) for how to do so based on the observed data distribution

(estimand(s))
|44 Z e (one could say this is essentially assumption-based extrapolation, some researchers think
l this entire enterprise is anti-scientific)
I'—Y e not yet said: how to do statistical inference to estimate the estimand (much can still go

Figure 26: intervened DAG: what wrong here)

wewantto know = can also be part of identification, see the following lecture on SCMs
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Beyond toy examples: d-separation and
back-door criterion



When life gets complicated / real

arental Abusive/criminal behaviour

Cognition/1Q
Parent skills
Maternal Diet - s
reastfe
Maternal Stress Y—= A
N
Drug use
"""--L‘. - :
Alcohol Pre-eclampsia
Maternal BMI

N

Matfrn%r( '
Ethnicity

Maternal Medical History

Genetic

Bogie, James; Fleming, Michael; Cullen, Breda; Mackay, Daniel; Pell, Jill P. (2021). Full directed acyclic graph.. PLOS ONE. Figure.
https://doi.org/10.1371/journal.pone.0249258.s003
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d-separation (directional-separation)

paths

a path is a set of nodes connected by edges (x ... y)

a directed-path is a path with a constant direction (x ... t)
an unblocked-path is a path without a collider (¢ ... y)

a blocked-path is a path with a collider (s, ¢, u)

d(irectional)-separation of x, y means there is no unblocked path between them
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d-separation when conditioning

paths with conditioning variablesr, ¢

e conditioning on variable:
= when variable is a collider: opens a path (t opens s, t, u etc.)
m otherwise: blocks a path (e.g. r blocks x,r, s)

e conditioning set Z = {r,t}: set of conditioning variables
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The back-door criterion and adjustment

Definition 3.3.1 (Back-Door) (for pairs of variables)

A set of variables Z satisfies the back-door criterion relative to an ordered pair of variables (X, Y) in a DAG if:

1.no nodein Zis a descendant of X (e.g. mediators)

2. Z blocks every path between X and Y that contains an arrow into X

Theorem 3.2.2 (Back-Door Adjustment)

If a set of variables Z satisfies the back-door criterion relative to (X, Y), then the causal effectof X on Y is
identifiable and is given by the formula

P(yldo(x)) = ) P(y|x,2)P(z)  (2)
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Did we see this equation before?

e Yes! When computing the effect of hospital deliveries on neonatal outcomes Equation 1

e DAGs tell us what to adjust for

e automatic algorithms tell use whether an estimand exists and what it is

e several point-and-click websites for making DAGs that implement these algorithms:

= dagitty.net

m causalfusion.net
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How about positivity

e backdoor adjustment with z requires computing P(y|x, z)

e by the product rule:

P(y,x,z)
P(x,z)

P(y|x,z) =

e this division is only defined when P(x,z) > 0O

e which is the same as the positivity assumption from Day 1 in Potential Outcomes
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