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Who are we

Assistant Professor UMCU
® (Causal Inference with Real World Data
® [arge-scale, multi-center, population health
databases
e Co-ordinator causal inference, statistics and data
engineering, RWE
® Applied research projects: Safety and Efficacy of
Vaccines for regulatory bodies
® Previous background in social sciences
® (Causal effects of language ability on study success
® Causal impact of after-school training programs in

Oisin Ryan Rotterdam
® Clinical Psychology applications
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Who are we

Assistant Professor UMCU

® |ntersection of Machine Learning and Causal
Inference in Healthcare

® Using prediction models for decision making

® Individual treatment effect estimation in cancer
settings

® Background in Physics (Bsc) Medicine (MD),
Machine learning in Healthcare (PhD)

Wouter van Amsterdam
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Who are we

Assistant Professor UMCU
® Methodological challenges in causal inference

® Causal Estimands in different study designs (e.g.
case-control)

e Comparing methods for estimating time-varying
effects

® Missing data, confounder adjustment and
measurement error

® Currently focused on teaching statistics, -
methodology and causal inference Bas Penning de Vries
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This Course

Goals

¢ Introduce you to the foundational concepts of causal modeling with
observational or non-experimental data.

® Show you how to view data problems or through lens(es) of causal inference
® Equip you with the skills to perform causal inference and causal modeling

® Get you started on your own journey of causal learning
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This Course

Goals

¢ Introduce you to the foundational concepts of causal modeling with
observational or non-experimental data.

® Show you how to view data problems or through lens(es) of causal inference
® Equip you with the skills to perform causal inference and causal modeling

® Get you started on your own journey of causal learning

Approach:
¢ Broad and interdisciplinary

® Practical and hands-on
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Outline

1 Potential Outcomes
® Adjusting for confounders |
2 Directed Acyclic Graphs
® Adjusting for confounders Il
3 Target Trial Emulation
® Adjusting for confounders Ill
4 Causal Data Science
® What is the difference between learning a causal and a predictive model from data?
® How do ideas from causal modeling interact with prediction tasks?
5 Wrapping up
® | ongitudinal settings

® Apply what you learned
* Q&A
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Practical Matters

Course materials and schedule:

® https://tinyurl.com/y3z9c48p

® Morning and Afternoon sessions:
Lecture x 2, Practical x 1

® Practical are in R

® Early end on Friday (14.00)
Lunch is provided

e 12:00 - 13:00, brought here

® The room will not be locked during
breaks: Take or leave possessions at
your own risk
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Today

1 Why Causal Modeling?

® How are statistical and causal modeling related?
® What types of questions is causal modeling concerned with?
® The "magic” of RCTs

2 Potential Outcomes

® Framework for causal modeling

Individual and Average Treatment Effects
® Assumptions for identifying causal effects
® |dentification vs Estimation

3 Adjustment Methods I: Stratification and Matching

9/61



Why Causal Modeling?
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Why Causal Modeling?

Does smoking cause cancer?

Was the covid-vaccine effective in lowering the risk of covid?

Is a medicine safe for pregnant women or does it lead to adverse health conditions?
Does the expression of gene X produce phenotype Y?

What is the effect of social media use on adolescent well-being?

What effect could we expect a sugar tax to have on rates of adult-onset diabetes
in the general population?

What was the effect of covid-19 lockdowns on hospitalization numbers?

Which treatment type will be most effective in reducing symptoms for this type of
individual?
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Why Causal Modeling?

Does smoking cause cancer?

Was the covid-vaccine effective in lowering the risk of covid?

Is a medicine safe for pregnant women or does it lead to adverse health conditions?
Does the expression of gene X produce phenotype Y?

What is the effect of social media use on adolescent well-being?

What effect could we expect a sugar tax to have on rates of adult-onset diabetes
in the general population?

What was the effect of covid-19 lockdowns on hospitalization numbers?

Which treatment type will be most effective in reducing symptoms for this type of
individual?

Causal Modeling: When can we answer causal questions using data? And how should
we go about doing this?
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Statistical vs Causal Modeling

Statistical modeling and data science give us a rich language to describe
uncertainty in the world we see around us

® The language of co-occurences, expected values, (joint, marginal and conditional)
probabilities, statistical dependencies, predicted values

® |t helps us describe patterns and make (certain types of) predictions.

We will be using many ideas and tools from statistical modeling in this course

11/61



Example

Imagine we are a team of health scientists.

We take a blood sample from a random
sample of the population and record:
® The level of expression of a particular
gene X

® The level of expression of a phenotype
Y (e.g. blood insulin levels).
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Example

Imagine we are a team of health scientists.

We take a blood sample from a random
sample of the population and record:

® The level of expression of a particular
gene X

® The level of expression of a phenotype
Y (e.g. blood insulin levels).

Phenotype Y

Activity of Gene X
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Example

Imagine we are a team of health scientists.

We take a blood sample from a random
sample of the population and record:

® The level of expression of a particular
gene X

Phenotype Y
4
1

® The level of expression of a phenotype ~ °
Y (e.g. blood insulin levels).

Activity of Gene X

What kind of information can we extract from this data? What tasks can we perform,
and what research questions can we answer using statistical techniques?
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Example

Description:

® What is the average level of gene

expression in the sample (X)?

® What does that tell us about the
average level in our population
(E[X])?

® How certain are we about our
estimate of the population mean?

Phenotype Y
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Activity of Gene X
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Example

Models for (co-)occurence

® What is the likelihood of observing a
low level of gene expression (Marginal
Distribution P(X = x))? °

® What is the probability that someone
in the population has both a high
insulin level and a high gene expression
(Joint distribution P(X,Y"))?

® We can fit models, such as the normal
distribution P(X,Y) ~ N(u,3) and
ask how well this model fits the data ! ‘ ‘ ‘ !

Phenotype Y
4
1

Activity of Gene X

14 /61



Example

Prediction:

If | collect one more data point in
identical circumstances and | observe
a gene expression score of 5, what is
my best guess of what phenotype level
that person has?

Answered by estimating / fitting
models for the conditional distribution
P(Y]X)

Best guess is the conditional
expectation E]Y | X = 5], which we
have to estimate somehow

Y =1.33+0.92*X +e,

e~ N(0,0.45)

| e e e |
00 04 08
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Example

What if instead of just observing genes and phenotypes, | was to manipulate/
intervene on | change the expression of that gene.

® E.g., deactivating or suppressing gene expression entirely.
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Activity of Gene X
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Example

What if instead of just observing genes and phenotypes, | was to manipulate/
intervene on / change the expression of that gene.
® E.g., deactivating or suppressing gene expression entirely.

This is a research question which requires causal reasoning to resolve
® Predicting phenotype from gene expression in a different setting: The intervention
setting instead of the observational setting
® Reasoning about the effects of an intervention which we did observe

® Reasoning about changing or interacting with the world
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Example:

Phenotype Y

Causal Reasoning
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Statistical vs Causal Modeling

Statistical modeling and data science give us a rich language to describe
uncertainty in the world we see around us

® The language of co-occurences, expected values, (joint, marginal and conditional)
probabilities and statistical dependencies.

® |t helps us describe patterns and make (certain types of) predictions.
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Statistical vs Causal Modeling

Statistical modeling and data science give us a rich language to describe
uncertainty in the world we see around us

® The language of co-occurences, expected values, (joint, marginal and conditional)
probabilities and statistical dependencies.
® |t helps us describe patterns and make (certain types of) predictions.

But by themselves, statistical models have very little to say about causal relations!
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Statistical vs Causal Modeling

Causal Modeling involves using concepts and techniques from statistical modeling
and data science

® But causal models and causal information exist on a level above statistical
information

Causal modeling is a way of understanding when, how and which type of causal effects
can be estimated from a particular dataset

® Involves reasoning about the subject matter (i.e. the real world) and how the
dataset at hand was collected, amongst other factors

® Motivates/guides the application of particular types of statistical techniques

Causal models are not a special class of statistical techniques which magically
guarantee that you can estimate causal effects from any dataset you happen to have
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Randomized Control Trials

Randomized Control Trials (RCTs) are the gold standard for estimating causal

effects.
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Randomized Control Trials
Randomized Control Trials (RCTs) are the gold standard for estimating causal

effects.
4 Experimental condition )
th %; %%%
(N J L
Rz_andom — Difference?
assignment Vs (
Control condition
$oat. they |
N LA
Great! But:

® What if the RCT doesn't work perfectly? What if | have non-compliance? Or if
the intervention takes place over time?

® What if | can't perform an RCT due to ethical or practical constraints?
Observational / non-experimental data?
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How can we perform causal modeling in practice?

Temptation to split the world up into two categories:
® Randomized Experiments: We can estimate and talk about causal effects

® Non-randomized experiments, observational data: Not a randomized experiment,
so don't even discuss causal relations

This conflates the means of research with the ends (Hernan, 2018)

This viewpoint muddies the waters

® In reality, the goal of much research is to learn about causal effects or causal
relations

® Policing of causal language in observational studies doesn’t change their goals,
but leads to the use of euphemisms (" predicts”, "relates”, "is a risk factor for”)

® | eads to confusion, poor methods, and a confused literature
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How can we move forward?

Randomized experiments are special, but why are they special?

® What are the features, mechanisms, and principles by which randomized
experiments typically lead to reliable causal inference?

By understanding these principles, can we understand if other designs might allow us
to make the same types of inferences

® How can mimic those mechanisms, and when can we make the same types of
inferences from other types of (e.g. observational) data?

We need a language to describe and understand causal inference
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Two Frameworks / Languages for Causal Inference

Potential Outcomes (Today).
® Developed by statistician Don Rubin (m)

® Imbens (1) & Angrist (r): Nobel Prize for
Economics 2021

Structural Causal Models / DAGs (Tomorrow).

® Developed by Judea Pearl, a computer
scientist, amongst many others

® “Bayesian Networks"
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Potential Outcomes |



Potential Outcomes

Headaches and Aspirin
® action: Aspirin (X = 1) or No Aspirin (X = 0)

® outcome: Headache gone (Y = 1) or Headache remains (Y = 0)

We want to know: Should | take an aspirin?

® | want to take aspirin if my headache level after taking aspirin is different than my
headache levels if | don't take aspirin

* Two potential versions of the outcome for every person. Outcome if treated
(YX=1) and outcome if not treated (Y X=0)

A causal effect is defined as a difference in potential outcomes
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Causal Effects

Individual Treatment Effect (or; Individual Causal Effect):
ITE; = Yi=! _ yXi=0
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Causal Effects

Individual Treatment Effect (or; Individual Causal Effect):
ITE; = Yi=! _ yXi=0

The fundamental problem of causal inference (Holland, 1986): We can only
observe one potential outcome per unit
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Causal Effects

Individual Treatment Effect (or; Individual Causal Effect):
ITE; = Yi=! _ yXi=0

The fundamental problem of causal inference (Holland, 1986): We can only
observe one potential outcome per unit

If you decide to take the aspirin (z = 1), in this situation | will observe your headache
outcome under aspirin-taking: YiXZ:1
® This is sometimes referred to as the factual outcome

But that means | cannot observe your headache outcome under aspirin-avoidance:
y Xi=0
i

® This is then referred to as your counterfactual outcome
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Causal Effects and Missing Data

From the potential outcomes perspective, causal inference is a missing data problem
How can we approach solving this problem?

On a "meta” level, there are two basic strategies we can (and must) engage in:

1 Change the estimand: Ask a different causal question, one that might be easier
to answer

2 Make assumptions: Use information and knowledge about the real world we do
have to make informed guesses about information we don't have
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On Causal (Identifiability) Assumptions

The topic of assumptions is central to all approaches to causal modeling you will
learn about this week

Causal Identifiability Assumption:

What would have to be true in the context in which this dataset was collected for us,
in theory, to be able to get at the causal effect we are interested in (assuming infinite
data, and without reference to any estimation approach)

We will learn about three generic causal identifiability assumptions in the potential
outcomes framework

They are not the same as statistical assumptions (e.g., heteroskedasticity, linearity,
etc.), and typically cannot be verified empirically.
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Which Estimand?

ITE estimation is generally quite tricky

® the assumptions we need to identify it are very strong or unlikely to hold in many
practical scenarios

Instead we typically focus on trying to infer the average treatment effect

Average Treatment Effect (or Average Causal Effect):
ATE = E[Y*=' - Y*=| = E[Y!] - E[Y"]

More feasible to estimate (i.e. typically we can make fewer or more realistic
assumptions ) when we have many observations from different individuals, and often
sufficient for many practical decision making situations
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Example: Aspirin and Headaches

Potential outcomes ICE

Y;l }/iO Y'il _ Y;O
Charles | 1 1 0
George | O 0 0
Susan 1 0 1
Tracy 1 1 0
Ken 0 1 -1
Pete 1 0 1
Helen 1 0 1
Kate 0 0 0
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Example: Aspirin and Headaches

Potential outcomes ICE

Y;l }/iO Y'il _ Y;O
Charles | 1 1 0
George | O 0 0
Susan 1 0 1
Tracy 1 1 0
Ken 0 1 -1
Pete 1 0 1
Helen 1 0 1
Kate 0 0 0

ATE = E[YY — E[YY
ATE=5/8 — 3/8 =025
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But we only observe one outcome per person

Unobserved Observed

v v Y- X v

Charles 1 0 1
George 0 1 0
Susan 1 1 1
Tracy 1 0 1
Ken 1 0 1
Pete 1 1 1
Helen 0 0 0
Kate 0 1 0
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But we only observe one outcome per person

Unobserved Observed
v v Y- X v
Charles 1 0 1
George 0 1 0
Susan 1 1 1
Tracy 1 0 1
Ken 1 0 1
Pete 1 1 1
Helen 0 0 0
Kate 0 1 0

Expected value of recovery aspirin takers (X = 1): (0+1+1+0)/4 = 0.5
Expected value of recovery aspirin avoiders (X = 0): (1+141+0)/4 = 0.75
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But we only observe one outcome per person

Unobserved Observed

v v Y- X v

Charles 1 0 1
George 0 1 0
Susan 1 1 1
Tracy 1 0 1
Ken 1 0 1
Pete 1 1 1
Helen 0 0 0
Kate 0 1 0

Expected value of recovery aspirin takers (X = 1): (0+1+1+0)/4 = 0.5
Expected value of recovery aspirin avoiders (X = 0): (1+141+0)/4 = 0.75

E(Y|X =1) - E(Y|X =0) = —0.25

Naive conclusion: Aspirin decreases chances of headache relief.
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What is the problem with observing?

Observing # intervening
E(Y|X =1)— E(Y|X =0) is not the same as E(Y!) — E(Y?)

Observing that E(Y|X =1) # E(Y|X = 0) (in words: the average value of
headache levels for those who did and did not take aspirin are unequal), does not, in
general, imply a causal effect of X on Y.
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What is the problem with observing?

Observing # intervening
E(Y|X =1)— E(Y|X =0) is not the same as E(Y!) — E(Y?)

Observing that E(Y|X =1) # E(Y|X = 0) (in words: the average value of
headache levels for those who did and did not take aspirin are unequal), does not, in
general, imply a causal effect of X on Y.

In RCTs, we often use E(Y|X =1) — E(Y|X = 0) as an estimate of the ATE.
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What is the problem with observing?

Observing # intervening
E(Y|X =1)— E(Y|X =0) is not the same as E(Y!) — E(Y?)

Observing that E(Y|X =1) # E(Y|X = 0) (in words: the average value of
headache levels for those who did and did not take aspirin are unequal), does not, in
general, imply a causal effect of X on Y.

In RCTs, we often use E(Y|X =1) — E(Y|X = 0) as an estimate of the ATE.
But why? What makes an RCT so special?
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Assumption 1: Exchangeability

At best, half of the potential outcomes are observed; hence, causal inference is at its
core a missing data problem.

The critical question is: What is the missing data mechanism?
Or: What is the assignment mechanism?

If there is a relation between the assignment mechanism and the potential
outcomes, this may bias the estimation of the causal effect.

Exchangeability:

The actual treatment received (X) and the potential outcome given treatment Y X are
independent: Y* L X for all =

This is also known as unconfoundedness: The missing potential outcome is missing
completely at random. Individuals across treatment groups are exchangeable
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Treatment NOT independent of potential outcomes

In a non-randomized study, treatment may depend on person features that also
relate to the potential outcomes.

Unobserved Observed | Confounder

v v Y- X v Zi
Charles 1 1 0 0 1 3
George 0 0 0 1 0 9
Susan 1 0 1 1 1 8
Tracy 1 1 0 0 1 5
Ken 0 1 -1 0 1 4
Pete 1 0 1 1 1 2
Helen 1 0 1 0 0 5
Kate 0 0 0 1 0 4

Average headache levels are higher among those who took the aspirin. But, people
who took aspirin also scored higher on the covariate dehydration levels Z;.
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Conditional Exchangeability

Luckily, we don’t need full exchangeability for causal inference. We only need
conditional exchangeability; conditional on a set of observed covariates, the
potential outcomes are independent of treatment assignment.

Conditional exchangeability:

The actual treatment received (X) and the potential outcome given treatment YX are
independent within certain levels of Z: Y* 1 X|Z

This implies that data are missing at random (rather than missing completely at
random).

Estimation of the ATE can proceed as long as we can properly account for (i.e.
condition on) the confounder Z. That is, if all confounders are observed and we
can control for them. But to be able to do this, we need...
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Assumption 2(a): Consistency

Consistency:

For each unit, we observe one of the potential outcomes of interest: Y for individuals with
X =1 and Y for those with X = 0.

Treatment is well-defined: there are not different versions of each treatment level that
lead to different potential outcomes.

Consistency ensures that we are making inferences about an actual target intervention.

® Subtle assumption that is very often violated in observational settings
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Different treatments

If there are multiple ways to raise X from 0 to 1, this means:
® there are multiple treatments
® these may have different effects

® and hence the causal question is ill-defined

Examples:
® What is the effect of obesity on health?
® Does physical punishment compromise children’s well-being?

® Does alcohol undermine cognitive performance in young adolescents?

To formulate better questions, we should define the target trial: The randomized
controlled trial we would have done, if it had been possible.
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Assumption 2(b): No Interference

No Interference:
The potential outcomes for any unit do not vary with the treatments assigned to other units

E.g., we are interested in the effects of ritalin on concentration levels among students
in a classroom. Alice may be better able to concentrate because Bob takes ritalin and
disrupts the classroom less

e Alice's value of YV depends on Bob's value of X
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Putting it together: SUTVA

Stable unit treatment value assumption (SUTVA):

The potential outcomes for any unit do not vary with the treatments assigned to other units
(i.e., no interference), and,

for each unit, there are not different versions of each treatment level that lead to different
potential outcomes.
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Assumption 3: Positivity

There must be exposed and unexposed participants at every combination of values
of Z in the population under study.

In an RCT, positivity is present by design (in the expectation)

In a

non-experimental study, violations can be detected by:
making tables of each categorical covariate and treatment (should be no empty cells)

categorize a continuous covariate and make table (but this depends on number and width of
categories)

considering all combinations of covariates (becomes impossible)
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Putting it Together

Three Conditions/Assumptions necessary for causal identification:
1 (Conditional) Exchangeability
2 SUTVA (consistency and no interference)
3 Positivity

Causal Estimation:

Given our data and causal identification assumptions, how should we estimate the
causal effect
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Practical 1
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Check-in exercise

In groups, discuss one of the following research questions and data settings. Which
identifiability assumption(s) might be violated, and why?

1 What is the effectiveness of a single shot of the 2024 flu vaccine compared to no
vaccine, on preventing respiratory illnesses in the population at large? We have
data from GPs who administered the vaccine primarily in elderly care homes.

2 Does drinking coffee prevent bowel cancer? We have information from a randomly
selected panel/cohort, where we track their coffee consumption and any cancer
diagnoses over 10 years.

3 Does taking after-school classes improve educational outcomes? We have data
from different schools where voluntary after-school classes were offered.
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Estimation
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The Two “Tasks” of Causal Inference

Identification

Assuming | have population-level
statistical information (given these
variables but with an infinite sample size),
can | infer the causal effect of interest?

What causal assumptions/conditions need
to be met?

Estimation

Given that my causal effect is identified,
how should | go about estimating this
effect from sample data?

Statistical assumptions - functional form,
distributions, etc.
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Causal Inference and Estimation

Generally in causal inference settings the aim is:
1 Mimic “randomization” using statistical tools: adjustment approaches

2 Do so by making as few additional statistical assumptions as possible (towards
non-parametric methods)
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Statistics in a nutshell

Statistical
Estimand

Estimator Estimate
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Causal Inference in a nutshell

Causal Causal Statistical

. ) Estimator Estimate
Estimand Model Estimand
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Causal Inference in a nutshell

Causal Causal Statistical

\ . Estimator Estimate
Estimand Model Estimand : :
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Conditional Exchangeability by Conditioning on Confounders

We want to condition on or adjust for variables that affect treatment assignment and
(potentially) the outcome of interest: confounders

When conditioning, we want to ensure that, within fixed levels of the confounders, the
control and treatment groups are conditionally exchangeable

There are many many different ways to condition on a variable(s)

® you are probably already familiar with regression models!

How to choose confounders? Must be based on background knowledge: we will return
to this tomorrow and Wednesday
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Treatment NOT independent of potential outcomes

In a non-randomized study, treatment may depend on person features that also
relate to the potential outcomes.

Unobserved Observed | Confounder

v v Y- X v Zi
Charles 1 1 0 0 1 3
George 0 0 0 1 0 9
Susan 1 0 1 1 1 8
Tracy 1 1 0 0 1 5
Ken 0 1 -1 0 1 4
Pete 1 0 1 1 1 2
Helen 1 0 1 0 0 5
Kate 0 0 0 1 0 4

Average headache levels are higher among those who took the aspirin. But, people
who took aspirin also scored higher on the covariate dehydration levels Z;.
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Adjustment by Stratification

1 Define strata or levels of the covariate(s) of interest. E.g.,
e 7=0272=1
2 Estimate the group difference within those strata.
e EY|X=1,Z=1-E[Y|X=1,7Z=1]
s EY|X=1,Z=0-E[Y|X=1,Z=0]
3 Take the weighted average, weighted by the number of people in each strata
e (EY|X=1,Z=1-EY|X=1,Z=1)p(Z=1)
4 Take the average to obtain the ATE/ACE
® ATE=Y(E[Y|X =1,Z=2]-E[Y|X =0,Z = 2))p(Z = 2)
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Adjustment by matching

Conceptually similar to adjustment by stratification
For every person in your dataset, find someone with the same set of covariate values
This enforces that covariates are balanced cross groups

The difference between matched treated and untreated groups is an estimate of the
ATE

More in the practical!
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Propensity Scores

Propensity Scores are a tool used primarily for causal estimation

Propensity scores (assuming no unobserved confounding):
The probability of exposure/treatment given confounders Z

- - _ exp(Zly)
mi = PIX; = 11Zi] = ogyi7g)

We estimate 7; using logistic regression

Propensity scores:

® Summarize information about the relationship between pre-treatment
confounders (Z) and treatment (X)

® Are used to ensure conditional exchangeability

Get YX 1 X|r toreplace YX Il X|Z
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Overlap of propensity scores

Histogram of propensity scores Histogram of logit of propensity scores

Frequency
40 60 80 100 120
1 1 1 1 |

Frequency
40 60 80

20

N
-

0.0 0.2 0.4 0.6 0.8 1.0 -4 -3 -2 -1 0 1 2

Propensity score Logit of propensity score

The distributions of logit(7;) for the treated and the untreated are typically different,
but should fully (and properly) overlap:
® non-overlapping areas imply violation of positivity assumption
® non-overlapping areas require extrapolation
® areas with very few people in one groups imply there are few matches
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Propensity Scores for Matching

Matching implies you create pairs that consist of a treated and a non-treated person,
who have identical propensity scores.

Background: In an RCT we have: P(Z|X =1) = P(Z|X =0)
Balancing property:
P(Zlr=¢,X=1)=P(Zlr=¢,X =0)

If the propensity model is correct, then comparing treated and untreated individuals
with the same 7 is a way of mimicking an RCT.
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Practical 2
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Potential Outcomes: An Overview

Causal Inference is a missing data problem
® When can | infer E[Y!}] — E[Y"] if i don't fully observe either?

Steps (broadly):
® Assess SUTVA, Exchangeability and Positivity

® |f you can meet those conditions, use covariate-based techniques like
matching/stratitification (with or without propensity scores) to adjust for/create

balanced groups of treated and not treated, mimicing what would occur by design
in an RCT

® Estimate ATE by adjusting for group differences on confounders
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